A synthetic biology approach to probing nucleosome symmetry

  1. Yuichi Ichikawa
  2. Caitlin F Connelly
  3. Alon Appleboim
  4. Thomas C Miller
  5. Hadas Jacobi
  6. Nebiyu A Abshiru
  7. Hsin-Jung Chou
  8. Yuanyuan Chen
  9. Upasna Sharma
  10. Yupeng Zheng
  11. Paul M Thomas
  12. Hsuiyi V Chen
  13. Vineeta Bajaj
  14. Christoph W Müeller
  15. Neil L Kelleher
  16. Nir Friedman
  17. Daniel NA Bolon
  18. Oliver J Rando  Is a corresponding author
  19. Paul D Kaufman  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. The Hebrew University, Israel
  3. European Molecular Biology Laboratory (EMBL), Germany
  4. Northwestern University, United States

Abstract

The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read , we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read by effector proteins in the cell.

Article and author information

Author details

  1. Yuichi Ichikawa

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Caitlin F Connelly

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alon Appleboim

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas C Miller

    Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hadas Jacobi

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Nebiyu A Abshiru

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hsin-Jung Chou

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuanyuan Chen

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Upasna Sharma

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yupeng Zheng

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul M Thomas

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Hsuiyi V Chen

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vineeta Bajaj

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Christoph W Müeller

    Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Neil L Kelleher

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8815-3372
  16. Nir Friedman

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550
  17. Daniel NA Bolon

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Oliver J Rando

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Oliver.Rando@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-9397
  19. Paul D Kaufman

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    paul.kaufman1@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3089-313X

Funding

National Institute of General Medical Sciences (R01GM100164)

  • Yuichi Ichikawa
  • Caitlin F Connelly
  • Hsin-Jung Chou
  • Hsuiyi V Chen
  • Oliver J Rando
  • Paul D Kaufman

European Commission (340712)

  • Alon Appleboim
  • Hadas Jacobi
  • Nir Friedman

National Institute of General Medical Sciences (P41GM108569)

  • Nebiyu A Abshiru
  • Yupeng Zheng
  • Paul M Thomas
  • Neil L Kelleher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: May 19, 2017
  2. Accepted: September 12, 2017
  3. Accepted Manuscript published: September 12, 2017 (version 1)
  4. Accepted Manuscript updated: September 13, 2017 (version 2)
  5. Version of Record published: October 3, 2017 (version 3)
  6. Version of Record updated: March 29, 2018 (version 4)

Copyright

© 2017, Ichikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,682
    Page views
  • 511
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuichi Ichikawa
  2. Caitlin F Connelly
  3. Alon Appleboim
  4. Thomas C Miller
  5. Hadas Jacobi
  6. Nebiyu A Abshiru
  7. Hsin-Jung Chou
  8. Yuanyuan Chen
  9. Upasna Sharma
  10. Yupeng Zheng
  11. Paul M Thomas
  12. Hsuiyi V Chen
  13. Vineeta Bajaj
  14. Christoph W Müeller
  15. Neil L Kelleher
  16. Nir Friedman
  17. Daniel NA Bolon
  18. Oliver J Rando
  19. Paul D Kaufman
(2017)
A synthetic biology approach to probing nucleosome symmetry
eLife 6:e28836.
https://doi.org/10.7554/eLife.28836

Share this article

https://doi.org/10.7554/eLife.28836

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.