1. Chromosomes and Gene Expression
Download icon

A synthetic biology approach to probing nucleosome symmetry

  1. Yuichi Ichikawa
  2. Caitlin F Connelly
  3. Alon Appleboim
  4. Thomas CR Miller
  5. Hadas Jacobi
  6. Nebiyu A Abshiru
  7. Hsin-Jung Chou
  8. Yuanyuan Chen
  9. Upasna Sharma
  10. Yupeng Zheng
  11. Paul M Thomas
  12. Hsuiyi V Chen
  13. Vineeta Bajaj
  14. Christoph W Müller
  15. Neil L Kelleher
  16. Nir Friedman
  17. Daniel NA Bolon
  18. Oliver J Rando  Is a corresponding author
  19. Paul D Kaufman  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. The Hebrew University, Israel
  3. The Francis Crick Institute, United Kingdom
  4. Northwestern University, United States
  5. European Molecular Biology Laboratory (EMBL), Germany
Tools and Resources
  • Cited 6
  • Views 2,007
  • Annotations
Cite this article as: eLife 2017;6:e28836 doi: 10.7554/eLife.28836

Abstract

The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read , we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read by effector proteins in the cell.

Article and author information

Author details

  1. Yuichi Ichikawa

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Caitlin F Connelly

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alon Appleboim

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas CR Miller

    Molecular Machines Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Hadas Jacobi

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Nebiyu A Abshiru

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hsin-Jung Chou

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuanyuan Chen

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Upasna Sharma

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yupeng Zheng

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul M Thomas

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Hsuiyi V Chen

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vineeta Bajaj

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Christoph W Müller

    Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Neil L Kelleher

    National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8815-3372
  16. Nir Friedman

    School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550
  17. Daniel NA Bolon

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Oliver J Rando

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Oliver.Rando@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-9397
  19. Paul D Kaufman

    Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    paul.kaufman1@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3089-313X

Funding

National Institute of General Medical Sciences (R01GM100164)

  • Yuichi Ichikawa
  • Caitlin F Connelly
  • Hsin-Jung Chou
  • Hsuiyi V Chen
  • Oliver J Rando
  • Paul D Kaufman

European Commission (340712)

  • Alon Appleboim
  • Hadas Jacobi
  • Nir Friedman

National Institute of General Medical Sciences (P41GM108569)

  • Nebiyu A Abshiru
  • Yupeng Zheng
  • Paul M Thomas
  • Neil L Kelleher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Publication history

  1. Received: May 19, 2017
  2. Accepted: September 12, 2017
  3. Accepted Manuscript published: September 12, 2017 (version 1)
  4. Accepted Manuscript updated: September 13, 2017 (version 2)
  5. Version of Record published: October 3, 2017 (version 3)
  6. Version of Record updated: March 29, 2018 (version 4)

Copyright

© 2017, Ichikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,007
    Page views
  • 425
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Pieter A Roelofs et al.
    Research Article

    APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here, we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Jay F Sarthy et al.
    Research Article Updated

    Lysine 27-to-methionine (K27M) mutations in the H3.1 or H3.3 histone genes are characteristic of pediatric diffuse midline gliomas (DMGs). These oncohistone mutations dominantly inhibit histone H3K27 trimethylation and silencing, but it is unknown how oncohistone type affects gliomagenesis. We show that the genomic distributions of H3.1 and H3.3 oncohistones in human patient-derived DMG cells are consistent with the DNAreplication-coupled deposition of histone H3.1 and the predominant replication-independent deposition of histone H3.3. Although H3K27 trimethylation is reduced for both oncohistone types, H3.3K27M-bearing cells retain some domains, and only H3.1K27M-bearing cells lack H3K27 trimethylation. Neither oncohistone interferes with PRC2 binding. Using Drosophila as a model, we demonstrate that inhibition of H3K27 trimethylation occurs only when H3K27M oncohistones are deposited into chromatin and only when expressed in cycling cells. We propose that oncohistones inhibit the H3K27 methyltransferase as chromatin patterns are being duplicated in proliferating cells, predisposing them to tumorigenesis.