Nuclear microenvironments modulate transcription from low-affinity enhancers

  1. Albert Tsai  Is a corresponding author
  2. Anand K Muthusamy
  3. Mariana RP Alves
  4. Luke D Lavis
  5. Robert H Singer
  6. David L Stern
  7. Justin Crocker  Is a corresponding author
  1. Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
  2. European Molecular Biology Laboratory, Germany

Abstract

Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogaster shavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Albert Tsai

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    tsaia@janelia.hhmi.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1643-0780
  2. Anand K Muthusamy

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Mariana RP Alves

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  4. Luke D Lavis

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Robert H Singer

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Robert H Singer, Reviewing editor, eLife.
  6. David L Stern

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Justin Crocker

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    justin.crocker@embl.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5113-0476

Funding

Damon Runyon Cancer Research Foundation (DRG 2220-15)

  • Albert Tsai

National Institutes of Health (U01-EB21236)

  • Robert H Singer

Howard Hughes Medical Institute

  • Albert Tsai
  • Anand K Muthusamy
  • Luke D Lavis
  • Robert H Singer
  • David L Stern
  • Justin Crocker

European Molecular Biology Laboratory

  • Mariana RP Alves
  • Justin Crocker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,519
    views
  • 1,234
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Albert Tsai
  2. Anand K Muthusamy
  3. Mariana RP Alves
  4. Luke D Lavis
  5. Robert H Singer
  6. David L Stern
  7. Justin Crocker
(2017)
Nuclear microenvironments modulate transcription from low-affinity enhancers
eLife 6:e28975.
https://doi.org/10.7554/eLife.28975

Share this article

https://doi.org/10.7554/eLife.28975

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Douwe Schulte, Marta Šiborová ... Joost Snijder
    Research Article

    Antibodies are a major component of adaptive immunity against invading pathogens. Here, we explore possibilities for an analytical approach to characterize the antigen-specific antibody repertoire directly from the secreted proteins in convalescent serum. This approach aims to perform simultaneous antibody sequencing and epitope mapping using a combination of single particle cryo-electron microscopy (cryoEM) and bottom-up proteomics techniques based on mass spectrometry (LC-MS/MS). We evaluate the performance of the deep-learning tool ModelAngelo in determining de novo antibody sequences directly from reconstructed 3D volumes of antibody-antigen complexes. We demonstrate that while map quality is a critical bottleneck, it is possible to sequence antibody variable domains from cryoEM reconstructions with accuracies of up to 80–90%. While the rate of errors exceeds the typical levels of somatic hypermutation, we show that the ModelAngelo-derived sequences can be used to assign the used V-genes. This provides a functional guide to assemble de novo peptides from LC-MS/MS data more accurately and improves the tolerance to a background of polyclonal antibody sequences. Following this proof-of-principle, we discuss the feasibility and future directions of this approach to characterize antigen-specific antibody repertoires.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.