Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel  Is a corresponding author
  1. Heidelberg University, Germany
  2. Freie Universität Berlin, Germany
  3. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  4. Academy of Sciences of the Czech Republic, Czech Republic
  5. University of Helsinki, Finland
  6. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  7. Paul Langerhans Institute Dresden, Germany

Abstract

FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.

Article and author information

Author details

  1. Julia P Steringer

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sascha Lange

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabína Čujová

    Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Radek Šachl

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poojari

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-221X
  6. Fabio Lolicato

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7537-0549
  7. Oliver Beutel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Michael Müller

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Unger

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ünal Coskun

    Paul Langerhans Institute Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4375-3144
  11. Alf Honigmann

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Ilpo Vattulainen

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-3214
  13. Martin Hof

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Freund

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Walter Nickel

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    For correspondence
    walter.nickel@bzh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6496-8286

Funding

Deutsche Forschungsgemeinschaft (SFB/TRR 83 SFB/TRR 186 SFB 854 SFB 958 DFG Ni 423/6-1)

  • Ünal Coskun
  • Martin Hof
  • Christian Freund

Czech Science Foundation (14-03141)

  • Martin Hof

European Research Council (Advanced Grant 290974 CROWDED-PRO-LIPIDS)

  • Ilpo Vattulainen

Academy of Finland (Center of Excellence projects 272130 and 307415)

  • Ilpo Vattulainen

Sigrid Juselius Foundation

  • Ilpo Vattulainen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Steringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,027
    views
  • 653
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel
(2017)
Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components
eLife 6:e28985.
https://doi.org/10.7554/eLife.28985

Share this article

https://doi.org/10.7554/eLife.28985

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.