Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel  Is a corresponding author
  1. Heidelberg University, Germany
  2. Freie Universität Berlin, Germany
  3. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  4. Academy of Sciences of the Czech Republic, Czech Republic
  5. University of Helsinki, Finland
  6. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  7. Paul Langerhans Institute Dresden, Germany

Abstract

FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.

Article and author information

Author details

  1. Julia P Steringer

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sascha Lange

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabína Čujová

    Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Radek Šachl

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poojari

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-221X
  6. Fabio Lolicato

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7537-0549
  7. Oliver Beutel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Michael Müller

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Unger

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ünal Coskun

    Paul Langerhans Institute Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4375-3144
  11. Alf Honigmann

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Ilpo Vattulainen

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-3214
  13. Martin Hof

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Freund

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Walter Nickel

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    For correspondence
    walter.nickel@bzh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6496-8286

Funding

Deutsche Forschungsgemeinschaft (SFB/TRR 83 SFB/TRR 186 SFB 854 SFB 958 DFG Ni 423/6-1)

  • Ünal Coskun
  • Martin Hof
  • Christian Freund

Czech Science Foundation (14-03141)

  • Martin Hof

European Research Council (Advanced Grant 290974 CROWDED-PRO-LIPIDS)

  • Ilpo Vattulainen

Academy of Finland (Center of Excellence projects 272130 and 307415)

  • Ilpo Vattulainen

Sigrid Juselius Foundation

  • Ilpo Vattulainen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Steringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,954
    views
  • 645
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel
(2017)
Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components
eLife 6:e28985.
https://doi.org/10.7554/eLife.28985

Share this article

https://doi.org/10.7554/eLife.28985

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.