Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel  Is a corresponding author
  1. Heidelberg University, Germany
  2. Freie Universität Berlin, Germany
  3. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  4. Academy of Sciences of the Czech Republic, Czech Republic
  5. University of Helsinki, Finland
  6. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  7. Paul Langerhans Institute Dresden, Germany

Abstract

FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.

Article and author information

Author details

  1. Julia P Steringer

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sascha Lange

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabína Čujová

    Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Radek Šachl

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poojari

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-221X
  6. Fabio Lolicato

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7537-0549
  7. Oliver Beutel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Michael Müller

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Unger

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ünal Coskun

    Paul Langerhans Institute Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4375-3144
  11. Alf Honigmann

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Ilpo Vattulainen

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-3214
  13. Martin Hof

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Freund

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Walter Nickel

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    For correspondence
    walter.nickel@bzh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6496-8286

Funding

Deutsche Forschungsgemeinschaft (SFB/TRR 83 SFB/TRR 186 SFB 854 SFB 958 DFG Ni 423/6-1)

  • Ünal Coskun
  • Martin Hof
  • Christian Freund

Czech Science Foundation (14-03141)

  • Martin Hof

European Research Council (Advanced Grant 290974 CROWDED-PRO-LIPIDS)

  • Ilpo Vattulainen

Academy of Finland (Center of Excellence projects 272130 and 307415)

  • Ilpo Vattulainen

Sigrid Juselius Foundation

  • Ilpo Vattulainen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher G Burd, Yale School of Medicine, United States

Version history

  1. Received: May 25, 2017
  2. Accepted: July 14, 2017
  3. Accepted Manuscript published: July 19, 2017 (version 1)
  4. Accepted Manuscript updated: July 27, 2017 (version 2)
  5. Version of Record published: September 15, 2017 (version 3)
  6. Version of Record updated: October 5, 2017 (version 4)

Copyright

© 2017, Steringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,900
    views
  • 643
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel
(2017)
Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components
eLife 6:e28985.
https://doi.org/10.7554/eLife.28985

Share this article

https://doi.org/10.7554/eLife.28985

Further reading

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.