Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel  Is a corresponding author
  1. Heidelberg University, Germany
  2. Freie Universität Berlin, Germany
  3. Academy of Sciences of the Czech Republic, Czech Republic
  4. University of Helsinki, Finland
  5. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  6. Paul Langerhans Institute Dresden, Germany

Abstract

FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.

Article and author information

Author details

  1. Julia P Steringer

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9418-2762
  2. Sascha Lange

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabína Čujová

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Radek Šachl

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poojari

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-221X
  6. Fabio Lolicato

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7537-0549
  7. Oliver Beutel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Michael Müller

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Unger

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ünal Coskun

    Paul Langerhans Institute Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4375-3144
  11. Alf Honigmann

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Ilpo Vattulainen

    Department of Physics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-3214
  13. Martin Hof

    J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Freund

    Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Walter Nickel

    Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
    For correspondence
    walter.nickel@bzh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6496-8286

Funding

Deutsche Forschungsgemeinschaft (SFB 854)

  • Christian Freund

Deutsche Forschungsgemeinschaft (SFB 958)

  • Christian Freund

Czech Science Foundation (14-03141)

  • Sabína Čujová
  • Radek Šachl
  • Martin Hof

European Research Council (Advanced Grant 290974 CROWDED-PRO-LIPIDS)

  • Chetan Poojari
  • Fabio Lolicato
  • Ilpo Vattulainen

Academy of Finland (Center of Excellence projects 307415)

  • Chetan Poojari
  • Fabio Lolicato
  • Ilpo Vattulainen

Sigrid Juselius Foundation

  • Chetan Poojari
  • Fabio Lolicato
  • Ilpo Vattulainen

Deutsche Forschungsgemeinschaft (SFB/TRR 83)

  • Christian Freund
  • Walter Nickel

Deutsche Forschungsgemeinschaft (SFB/TRR 186)

  • Walter Nickel

Deutsche Forschungsgemeinschaft (DFG Ni 423/6-1)

  • Walter Nickel

Academy of Finland (Center of Excellence projects 272130)

  • Chetan Poojari
  • Fabio Lolicato
  • Ilpo Vattulainen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher G Burd, Yale School of Medicine, United States

Publication history

  1. Received: May 25, 2017
  2. Accepted: July 14, 2017
  3. Accepted Manuscript published: July 19, 2017 (version 1)
  4. Accepted Manuscript updated: July 27, 2017 (version 2)
  5. Version of Record published: September 15, 2017 (version 3)
  6. Version of Record updated: October 5, 2017 (version 4)

Copyright

© 2017, Steringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,292
    Page views
  • 591
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia P Steringer
  2. Sascha Lange
  3. Sabína Čujová
  4. Radek Šachl
  5. Chetan Poojari
  6. Fabio Lolicato
  7. Oliver Beutel
  8. Hans-Michael Müller
  9. Sebastian Unger
  10. Ünal Coskun
  11. Alf Honigmann
  12. Ilpo Vattulainen
  13. Martin Hof
  14. Christian Freund
  15. Walter Nickel
(2017)
Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components
eLife 6:e28985.
https://doi.org/10.7554/eLife.28985

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Laura M Doherty et al.
    Research Article

    Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).

    1. Biochemistry and Chemical Biology
    Erich J Goebel et al.
    Research Article

    Activin ligands are formed from two disulfide-linked inhibin β (Inhβ) subunit chains. They exist as homodimeric proteins, as in the case of activin A (ActA; InhβA/InhβA) or activin C (ActC; InhβC/InhβC), or as heterodimers, as with activin AC (ActAC; InhβA:InhβC). While the biological functions of ActA and activin B (ActB) have been well characterized, little is known about the biological functions of ActC or ActAC. One thought is that the InhβC chain functions to interfere with ActA production by forming less active ActAC heterodimers. Here, we assessed and characterized the signaling capacity of ligands containing the InhβC chain. ActC and ActAC activated SMAD2/3-dependent signaling via the type I receptor, activin receptor-like kinase 7 (ALK7). Relative to ActA and ActB, ActC exhibited lower affinity for the cognate activin type II receptors and was resistant to neutralization by the extracellular antagonist, follistatin. In mature murine adipocytes, which exhibit high ALK7 expression, ActC elicited a SMAD2/3 response similar to ActB, which can also signal via ALK7. Collectively, these results establish that ActC and ActAC are active ligands that exhibit a distinct signaling receptor and antagonist profile compared to other activins.