Abstract

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.

Article and author information

Author details

  1. Lance D Langston

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2736-9284
  2. Ryan Mayle

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Grant D Schauer

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olga Yurieva

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Zhang

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nina Y Yao

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roxana E Georgescu

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1882-2358
  8. Mike E O'Donnell

    The Rockefeller University, New York City, United States
    For correspondence
    odonnel@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9002-4214

Funding

Howard Hughes Medical Institute

  • Lance D Langston
  • Ryan Mayle
  • Olga Yurieva
  • Roxana E Georgescu
  • Mike E O'Donnell

National Institutes of Health (GM38839)

  • Lance D Langston
  • Ryan Mayle
  • Grant D Schauer
  • Olga Yurieva
  • Daniel Zhang
  • Nina Y Yao
  • Roxana E Georgescu
  • Mike E O'Donnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: June 1, 2017
  2. Accepted: September 3, 2017
  3. Accepted Manuscript published: September 4, 2017 (version 1)
  4. Version of Record published: September 14, 2017 (version 2)

Copyright

© 2017, Langston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,473
    views
  • 450
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lance D Langston
  2. Ryan Mayle
  3. Grant D Schauer
  4. Olga Yurieva
  5. Daniel Zhang
  6. Nina Y Yao
  7. Roxana E Georgescu
  8. Mike E O'Donnell
(2017)
Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks
eLife 6:e29118.
https://doi.org/10.7554/eLife.29118

Share this article

https://doi.org/10.7554/eLife.29118

Further reading

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.