Abstract

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.

Article and author information

Author details

  1. Lance D Langston

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2736-9284
  2. Ryan Mayle

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Grant D Schauer

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olga Yurieva

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Zhang

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nina Y Yao

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roxana E Georgescu

    The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1882-2358
  8. Mike E O'Donnell

    The Rockefeller University, New York City, United States
    For correspondence
    odonnel@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9002-4214

Funding

Howard Hughes Medical Institute

  • Lance D Langston
  • Ryan Mayle
  • Olga Yurieva
  • Roxana E Georgescu
  • Mike E O'Donnell

National Institutes of Health (GM38839)

  • Lance D Langston
  • Ryan Mayle
  • Grant D Schauer
  • Olga Yurieva
  • Daniel Zhang
  • Nina Y Yao
  • Roxana E Georgescu
  • Mike E O'Donnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Langston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,588
    views
  • 468
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lance D Langston
  2. Ryan Mayle
  3. Grant D Schauer
  4. Olga Yurieva
  5. Daniel Zhang
  6. Nina Y Yao
  7. Roxana E Georgescu
  8. Mike E O'Donnell
(2017)
Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks
eLife 6:e29118.
https://doi.org/10.7554/eLife.29118

Share this article

https://doi.org/10.7554/eLife.29118

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.