Effects of water, sanitation, handwashing, and nutritional interventions on telomere length among children in a cluster-randomized controlled trial in rural Bangladesh

  1. Audrie Lin  Is a corresponding author
  2. Benjamin F Arnold
  3. Andrew N Mertens
  4. Jue Lin
  5. Jade Benjamin-Chung
  6. Shahjahan Ali
  7. Alan E Hubbard
  8. Christine P Stewart
  9. Abul K Shoab
  10. Md Ziaur Rahman
  11. Md Saheen Hossen
  12. Palash Mutsuddi
  13. Syeda L Famida
  14. Salma Akther
  15. Mahbubur Rahman
  16. Leanne Unicomb
  17. Firdaus S Dhabhar
  18. Lia C H Fernald
  19. John M Colford
  20. Stephen P Luby
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States
  3. International Centre for Diarrhoeal Disease Research, Bangladesh, Bangladesh
  4. University of California, Davis, United States
  5. University of Miami, United States
  6. Stanford University, United States

Abstract

Background: Shorter childhood telomere length (TL) and more rapid TL attrition are widely regarded as manifestations of stress. However, the potential effects of health interventions on child TL are unknown. We hypothesized that a water, sanitation, handwashing (WSH), and nutritional intervention would slow TL attrition during the first two years of life. Methods: In a trial in rural Bangladesh (ClinicalTrials.gov, NCT01590095), we randomized geographical clusters of pregnant women into individual water treatment, sanitation, handwashing, nutrition, combined WSH, combined nutrition plus WSH (N+WSH), or control arms. We conducted a substudy enrolling children from the control arm and the N+WSH intervention arm. Participants and outcome assessors were not masked; analyses were masked. Relative TL was measured at 1 and 2 years after intervention, and the change in relative TL was reported. Analysis was intention-to-treat. Findings: Between May 2012 and July 2013, in the overall trial, we randomized 720 geographical clusters of 5551 pregnant women to a control or an intervention arm. In this substudy, after 1 year of intervention, we assessed a total of 662 children (341 intervention and 321 control) and 713 children after 2 years of intervention (383 intervention and 330 control). Children in the intervention arm had significantly shorter relative TL compared with controls after 1 year of intervention (difference -163 base pairs (bp), P=0.001). Between years 1 and 2, TL increased in the intervention arm (+76 bp) and decreased in the controls (-23 bp) (P=0.050). After 2 years, there was no difference between the arms (P=0.305). Interpretation: Our unexpected finding of increased telomere attrition during the first year of life in the intervention group suggests that rapid telomere attrition during this critical period could reflect the improved growth in the intervention group, rather than accumulated stress.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Audrie Lin

    School of Public Health, University of California, Berkeley, Berkeley, United States
    For correspondence
    audrielin@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3877-3469
  2. Benjamin F Arnold

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6105-7295
  3. Andrew N Mertens

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Jue Lin

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    Jue Lin, is a co-founder of Telomere Diagnostics Inc., a telomere measurement company..
  5. Jade Benjamin-Chung

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Shahjahan Ali

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  7. Alan E Hubbard

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Christine P Stewart

    Department of Nutrition, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  9. Abul K Shoab

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  10. Md Ziaur Rahman

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  11. Md Saheen Hossen

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  12. Palash Mutsuddi

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  13. Syeda L Famida

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  14. Salma Akther

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  15. Mahbubur Rahman

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  16. Leanne Unicomb

    Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
    Competing interests
    No competing interests declared.
  17. Firdaus S Dhabhar

    Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  18. Lia C H Fernald

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  19. John M Colford

    School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  20. Stephen P Luby

    Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.

Funding

Bill and Melinda Gates Foundation (Global Development grant OPPGD759)

  • John M Colford

The funder approved the study design, but was not involved in data collection, analysis, interpretation or any decisions related to publication. The corresponding author had full access to all study data and final responsibility for the decision to submit for publication.

Reviewing Editor

  1. Eduardo Franco, McGill University, Canada

Ethics

Human subjects: Primary caregivers of all children provided written informed consent. The study protocols were approved by human subjects committees at icddr,b (PR-11063 and PR-14108), the University of California, Berkeley (2011-09-3652 and 2014-07-6561) and Stanford University (25863 and 35583).

Version history

  1. Received: June 7, 2017
  2. Accepted: October 3, 2017
  3. Accepted Manuscript published: October 5, 2017 (version 1)
  4. Version of Record published: November 7, 2017 (version 2)
  5. Version of Record updated: April 2, 2020 (version 3)

Copyright

© 2017, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,173
    views
  • 402
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Audrie Lin
  2. Benjamin F Arnold
  3. Andrew N Mertens
  4. Jue Lin
  5. Jade Benjamin-Chung
  6. Shahjahan Ali
  7. Alan E Hubbard
  8. Christine P Stewart
  9. Abul K Shoab
  10. Md Ziaur Rahman
  11. Md Saheen Hossen
  12. Palash Mutsuddi
  13. Syeda L Famida
  14. Salma Akther
  15. Mahbubur Rahman
  16. Leanne Unicomb
  17. Firdaus S Dhabhar
  18. Lia C H Fernald
  19. John M Colford
  20. Stephen P Luby
(2017)
Effects of water, sanitation, handwashing, and nutritional interventions on telomere length among children in a cluster-randomized controlled trial in rural Bangladesh
eLife 6:e29365.
https://doi.org/10.7554/eLife.29365

Share this article

https://doi.org/10.7554/eLife.29365

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.