Natural variation in stochastic photoreceptor specification and color preference in Drosophila

  1. Caitlin Anderson
  2. India Reiss
  3. Cyrus Zhou
  4. Annie Cho
  5. Haziq Siddiqi
  6. Benjamin Mormann
  7. Cameron M Avelis
  8. Peter Deford
  9. Alan Bergland
  10. Elijah Roberts
  11. James Taylor
  12. Daniel Vasiliauskas
  13. Robert J Johnston  Is a corresponding author
  1. Johns Hopkins University, United States
  2. New York University, United States
  3. University of Virginia, United States
  4. Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, France

Abstract

Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic ON/OFF expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.

Article and author information

Author details

  1. Caitlin Anderson

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. India Reiss

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cyrus Zhou

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annie Cho

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Haziq Siddiqi

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin Mormann

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cameron M Avelis

    Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Deford

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alan Bergland

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-7575
  10. Elijah Roberts

    Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Taylor

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5079-840X
  12. Daniel Vasiliauskas

    Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Robert J Johnston

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    robertjohnston@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5775-6218

Funding

National Eye Institute (R01EY025598)

  • Robert J Johnston

Pew Charitable Trusts (27373)

  • Robert J Johnston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Anderson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,478
    views
  • 435
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caitlin Anderson
  2. India Reiss
  3. Cyrus Zhou
  4. Annie Cho
  5. Haziq Siddiqi
  6. Benjamin Mormann
  7. Cameron M Avelis
  8. Peter Deford
  9. Alan Bergland
  10. Elijah Roberts
  11. James Taylor
  12. Daniel Vasiliauskas
  13. Robert J Johnston
(2017)
Natural variation in stochastic photoreceptor specification and color preference in Drosophila
eLife 6:e29593.
https://doi.org/10.7554/eLife.29593

Share this article

https://doi.org/10.7554/eLife.29593

Further reading

    1. Developmental Biology
    Wei Yan
    Editorial

    The articles in this special issue highlight the diversity and complexity of research into reproductive health, including the need for a better understanding of the fundamental biology of reproduction and for new treatments for a range of reproductive disorders.

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.