Natural variation in stochastic photoreceptor specification and color preference in Drosophila

  1. Caitlin Anderson
  2. India Reiss
  3. Cyrus Zhou
  4. Annie Cho
  5. Haziq Siddiqi
  6. Benjamin Mormann
  7. Cameron M Avelis
  8. Peter Deford
  9. Alan Bergland
  10. Elijah Roberts
  11. James Taylor
  12. Daniel Vasiliauskas
  13. Robert J Johnston  Is a corresponding author
  1. Johns Hopkins University, United States
  2. New York University, United States
  3. University of Virginia, United States
  4. Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, France

Abstract

Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic ON/OFF expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.

Article and author information

Author details

  1. Caitlin Anderson

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. India Reiss

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cyrus Zhou

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annie Cho

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Haziq Siddiqi

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin Mormann

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cameron M Avelis

    Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Deford

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alan Bergland

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-7575
  10. Elijah Roberts

    Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Taylor

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5079-840X
  12. Daniel Vasiliauskas

    Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Robert J Johnston

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    robertjohnston@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5775-6218

Funding

National Eye Institute (R01EY025598)

  • Robert J Johnston

Pew Charitable Trusts (27373)

  • Robert J Johnston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Simon G Sprecher, University of Fribourg, Switzerland

Version history

  1. Received: June 14, 2017
  2. Accepted: December 15, 2017
  3. Accepted Manuscript published: December 18, 2017 (version 1)
  4. Accepted Manuscript updated: December 22, 2017 (version 2)
  5. Accepted Manuscript updated: December 23, 2017 (version 3)
  6. Version of Record published: December 27, 2017 (version 4)
  7. Version of Record updated: January 12, 2018 (version 5)
  8. Version of Record updated: April 16, 2018 (version 6)

Copyright

© 2017, Anderson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,290
    Page views
  • 421
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caitlin Anderson
  2. India Reiss
  3. Cyrus Zhou
  4. Annie Cho
  5. Haziq Siddiqi
  6. Benjamin Mormann
  7. Cameron M Avelis
  8. Peter Deford
  9. Alan Bergland
  10. Elijah Roberts
  11. James Taylor
  12. Daniel Vasiliauskas
  13. Robert J Johnston
(2017)
Natural variation in stochastic photoreceptor specification and color preference in Drosophila
eLife 6:e29593.
https://doi.org/10.7554/eLife.29593

Share this article

https://doi.org/10.7554/eLife.29593

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.