Epidemiological and ecological determinants of Zika virus transmission in an urban setting

  1. José Lourenço  Is a corresponding author
  2. Maricelia Maia de Lima
  3. Nuno Rodrigues Faria
  4. Andrew Walker
  5. Moritz UG Kraemer
  6. Christian Julian Villabona-Arenas
  7. Ben Lambert
  8. Erenilde Marques de Cerqueira
  9. Oliver G Pybus
  10. Luiz CJ Alcantara
  11. Mario Recker
  1. University of Oxford, United Kingdom
  2. FIOCRUZ, Brazil
  3. Université de Montpellier, France
  4. Centre of PostGraduation in Collective Health, Universidade Estadual de Feira de Santana, Brazil
  5. University of Exeter, United Kingdom

Abstract

The Zika virus has emerged as a global public health concern. Its rapid geographic expansion is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers are still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic in Brazil and was one of the first urban centres to report Zika infections. Using a climate-driven transmission model and notified Zika case data, we show that a low observation rate and high vectorial capacity translated into a significant attack rate during the 2015 outbreak, with a subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a potential Zika-related, low risk for microcephaly per pregnancy, but with significant public health impact given high attack rates. The balance between the loss of herd-immunity and viral re-importation will dictate future transmission potential of in this urban setting.

Article and author information

Author details

  1. José Lourenço

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    jose.lourenco@zoo.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9318-2581
  2. Maricelia Maia de Lima

    Laboratory of Haematology, Genetics and Computational Biology, FIOCRUZ, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Nuno Rodrigues Faria

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8839-2798
  4. Andrew Walker

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Moritz UG Kraemer

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8838-7147
  6. Christian Julian Villabona-Arenas

    Institut de Recherche pour le Développement (IRD), UMI 233, INSERM U1175, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9928-3968
  7. Ben Lambert

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Erenilde Marques de Cerqueira

    Department of Health, Centre of PostGraduation in Collective Health, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Oliver G Pybus

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Luiz CJ Alcantara

    Laboratory of Haematology, Genetics and Computational Biology, FIOCRUZ, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Mario Recker

    Centre for Mathematics and the Environment, University of Exeter, Penryn, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9489-1315

Funding

European Research Council (614725-PATHPHYLODYN)

  • Oliver G Pybus

Royal Society

  • Mario Recker

Wellcome Trust & Royal Society (204311/Z/16/Z)

  • Nuno Rodrigues Faria

Engineering and Physical Sciences Research Council

  • Ben Lambert

European Research Council (268904 - DIVERSITY)

  • José Lourenço
  • Andrew Walker

International Development Emerging Pandemic Threats Program-2 (AID-OAA-A-14-00102)

  • Moritz UG Kraemer

Labex EpiGenMed (ANR-10-LABX-12-01)

  • Christian Julian Villabona-Arenas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Lourenço et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,225
    views
  • 805
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Lourenço
  2. Maricelia Maia de Lima
  3. Nuno Rodrigues Faria
  4. Andrew Walker
  5. Moritz UG Kraemer
  6. Christian Julian Villabona-Arenas
  7. Ben Lambert
  8. Erenilde Marques de Cerqueira
  9. Oliver G Pybus
  10. Luiz CJ Alcantara
  11. Mario Recker
(2017)
Epidemiological and ecological determinants of Zika virus transmission in an urban setting
eLife 6:e29820.
https://doi.org/10.7554/eLife.29820

Share this article

https://doi.org/10.7554/eLife.29820

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Edited by Prabhat Jha et al.
    Collection Updated

    eLife has published papers on many tropical diseases, including malaria, Ebola, leishmaniases, Dengue and African sleeping sickness.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.