The eukaryotic translation initiation factor eIF4E harnesses hyaluronan production to drive its malignant activity

Abstract

The microenvironment provides a functional substratum supporting tumour growth. Hyaluronan (HA) is a major component of this structure. While the role of HA in malignancy is well-defined, the mechanisms driving its biosynthesis in cancer are poorly understood. We show that the eukaryotic translation initiation factor eIF4E, an oncoprotein, drives HA biosynthesis. eIF4E stimulates production of enzymes that synthesize the building blocks of HA, UDP-Glucuronic acid and UDP-N-Acetyl-Glucosamine, as well as hyaluronic acid synthase which forms the disaccharide chain. Strikingly, eIF4E inhibition alone repressed HA levels as effectively as directly targeting HA with hyaluronidase. Unusually, HA was retained on the surface of high-eIF4E cells, rather than being extruded into the extracellular space. Surface-associated HA was required for eIF4E's oncogenic activities suggesting that eIF4E potentiates an oncogenic HA program. These studies provide unique insights into the mechanisms driving HA production and demonstrate that an oncoprotein can co-opt HA biosynthesis to drive malignancy.

Article and author information

Author details

  1. Hiba Ahmad Zahreddine

    Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Biljana Culjkovic-Kraljacic

    Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Audrey Emond

    Segal Cancer Centre, Jewish General Hospital, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Filippa Pettersson

    Segal Cancer Centre, Jewish General Hospital, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ronald Midura

    Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark Lauer

    Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonia Del Rincon

    Segal Cancer Centre, Jewish General Hospital, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Valbona Cali

    Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sarit Assouline

    Segal Cancer Centre, Jewish General Hospital, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Wilson H Miller

    Segal Cancer Centre, Jewish General Hospital, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Vincent Hascall

    Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Katherine Borden

    Institute for Research in Immunology, Université de Montréal, Montréal, Canada
    For correspondence
    katherine.borden@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2188-5074

Funding

National Institutes of Health

  • Hiba Ahmad Zahreddine
  • Katherine Borden

Leukemia and Lymphoma Society

  • Hiba Ahmad Zahreddine
  • Katherine Borden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written informed consent was obtained in accordance with the Declaration of Helsinki. This study received IRB approval from the Conseil d'évaluation éthique pour les recherches en santé (CERES) (approval numbers 13-089-CERES and 14-112-CERES) and the Comité d'éthique de la faculté de Medicine (CERFM#195; tissue bank). The study was also approved by Health Canada (112878, 132348 and 173149; samples taken from three different protocols). ClinicalTrials.gov registry numbers: NCT00559091, NCT01056523 and NCT02073838.

Copyright

© 2017, Zahreddine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,213
    views
  • 293
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiba Ahmad Zahreddine
  2. Biljana Culjkovic-Kraljacic
  3. Audrey Emond
  4. Filippa Pettersson
  5. Ronald Midura
  6. Mark Lauer
  7. Sonia Del Rincon
  8. Valbona Cali
  9. Sarit Assouline
  10. Wilson H Miller
  11. Vincent Hascall
  12. Katherine Borden
(2017)
The eukaryotic translation initiation factor eIF4E harnesses hyaluronan production to drive its malignant activity
eLife 6:e29830.
https://doi.org/10.7554/eLife.29830

Share this article

https://doi.org/10.7554/eLife.29830

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.