1. Structural Biology and Molecular Biophysics
  2. Microbiology and Infectious Disease
Download icon

Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design

  1. Ching-Lin Hsieh
  2. Christopher P Ptak
  3. Andrew Tseng
  4. Igor Massahiro de Souza Suguiura
  5. Sean P McDonough
  6. Tepyuda Sritrakul
  7. Ting Li
  8. Yi-Pin Lin
  9. Richard E Gillilan
  10. Robert Oswald  Is a corresponding author
  11. Yung-Fu Chang  Is a corresponding author
  1. Cornell University, United States
  2. New York State Department of Health, United States
Research Article
  • Cited 6
  • Views 1,903
  • Annotations
Cite this article as: eLife 2017;6:e30051 doi: 10.7554/eLife.30051

Abstract

Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Ching-Lin Hsieh

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher P Ptak

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-0367
  3. Andrew Tseng

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Igor Massahiro de Souza Suguiura

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean P McDonough

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tepyuda Sritrakul

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ting Li

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Pin Lin

    Division of Infectious Disease, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard E Gillilan

    Cornell High Energy Synchrotron Source, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7636-3188
  10. Robert Oswald

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    reo1@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Yung-Fu Chang

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    For correspondence
    yc42@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8902-3089

Funding

Center for Advanced Technology program (478-3400)

  • Yung-Fu Chang

Biotechnology Research and Development Corporation (478-9355)

  • Yung-Fu Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were housed in isolation units approved by the Cornell University Institutional Animal Care and Use Committee (Protocol number: 2015-0133).

Reviewing Editor

  1. Volker Dötsch, J.W. Goethe-University, Germany

Publication history

  1. Received: June 29, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 6, 2017 (version 1)
  4. Version of Record published: January 2, 2018 (version 2)

Copyright

© 2017, Hsieh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,903
    Page views
  • 277
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Fang Tian et al.
    Research Article Updated

    SARS-CoV-2 has been spreading around the world for the past year. Recently, several variants such as B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), which share a key mutation N501Y on the receptor-binding domain (RBD), appear to be more infectious to humans. To understand the underlying mechanism, we used a cell surface-binding assay, a kinetics study, a single-molecule technique, and a computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and a slower dissociation rate. Atomic force microscopy (AFM)-based single-molecule force microscopy (SMFS) consistently quantified the interaction strength of RBD with the mutation as having increased binding probability and requiring increased unbinding force. Molecular dynamics simulations of RBD–ACE2 complexes indicated that the N501Y mutation introduced additional π-π and π-cation interactions that could explain the changes observed by force microscopy. Taken together, these results suggest that the reinforced RBD–ACE2 interaction that results from the N501Y mutation in the RBD should play an essential role in the higher rate of transmission of SARS-CoV-2 variants, and that future mutations in the RBD of the virus should be under surveillance.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Justin D Lormand et al.
    Research Advance

    RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.