Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design

  1. Ching-Lin Hsieh
  2. Christopher P Ptak
  3. Andrew Tseng
  4. Igor Massahiro de Souza Suguiura
  5. Sean P McDonough
  6. Tepyuda Sritrakul
  7. Ting Li
  8. Yi-Pin Lin
  9. Richard E Gillilan
  10. Robert Oswald  Is a corresponding author
  11. Yung-Fu Chang  Is a corresponding author
  1. Cornell University, United States
  2. New York State Department of Health, United States

Abstract

Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Ching-Lin Hsieh

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher P Ptak

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-0367
  3. Andrew Tseng

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Igor Massahiro de Souza Suguiura

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean P McDonough

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tepyuda Sritrakul

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ting Li

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Pin Lin

    Division of Infectious Disease, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard E Gillilan

    Cornell High Energy Synchrotron Source, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7636-3188
  10. Robert Oswald

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    reo1@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Yung-Fu Chang

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    For correspondence
    yc42@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8902-3089

Funding

Center for Advanced Technology program (478-3400)

  • Yung-Fu Chang

Biotechnology Research and Development Corporation (478-9355)

  • Yung-Fu Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were housed in isolation units approved by the Cornell University Institutional Animal Care and Use Committee (Protocol number: 2015-0133).

Reviewing Editor

  1. Volker Dötsch, J.W. Goethe-University, Germany

Publication history

  1. Received: June 29, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 6, 2017 (version 1)
  4. Version of Record published: January 2, 2018 (version 2)

Copyright

© 2017, Hsieh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,977
    Page views
  • 294
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ching-Lin Hsieh
  2. Christopher P Ptak
  3. Andrew Tseng
  4. Igor Massahiro de Souza Suguiura
  5. Sean P McDonough
  6. Tepyuda Sritrakul
  7. Ting Li
  8. Yi-Pin Lin
  9. Richard E Gillilan
  10. Robert Oswald
  11. Yung-Fu Chang
(2017)
Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design
eLife 6:e30051.
https://doi.org/10.7554/eLife.30051
  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Nathanael A Caveney et al.
    Short Report Updated

    Interleukin 27 (IL-27) is a heterodimeric cytokine that functions to constrain T cell-mediated inflammation and plays an important role in immune homeostasis. Binding of IL-27 to cell surface receptors, IL-27Rα and gp130, results in activation of receptor-associated Janus Kinases and nuclear translocation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT3 transcription factors. Despite the emerging therapeutic importance of this cytokine axis in cancer and autoimmunity, a molecular blueprint of the IL-27 receptor signaling complex, and its relation to other gp130/IL-12 family cytokines, is currently unclear. We used cryogenic-electron microscopy to determine the quaternary structure of IL-27, composed of p28 and Epstein-Barr Virus-Induced 3 (Ebi3) subunits, bound to receptors, IL-27Rα and gp130. The resulting 3.47 Å resolution structure revealed a three-site assembly mechanism nucleated by the central p28 subunit of the cytokine. The overall topology and molecular details of this binding are reminiscent of IL-6 but distinct from related heterodimeric cytokines IL-12 and IL-23. These results indicate distinct receptor assembly mechanisms used by heterodimeric cytokines with important consequences for targeted agonism and antagonism of IL-27 signaling.

    1. Structural Biology and Molecular Biophysics
    Hisham Mazal et al.
    Research Article

    Cryogenic optical localization in three dimensions (COLD) was recently shown to resolve up to four binding sites on a single protein. However, because COLD relies on intensity fluctuations that result from the blinking behavior of fluorophores, it is limited to cases where individual emitters show different brightness. This significantly lowers the measurement yield. To extend the number of resolved sites as well as the measurement yield, we employ partial labeling and combine it with polarization encoding in order to identify single fluorophores during their stochastic blinking. We then use a particle classification scheme to identify and resolve heterogenous subsets and combine them to reconstruct the three-dimensional arrangement of large molecular complexes. We showcase this method (polarCOLD) by resolving the trimer arrangement of proliferating cell nuclear antigen (PCNA) and six different sites of the hexamer protein Caseinolytic Peptidase B (ClpB) of Thermus thermophilus in its quaternary structure, both with Angstrom resolution. The combination of polarCOLD and single-particle cryogenic electron microscopy (cryoEM) promises to provide crucial insight into intrinsic heterogeneities of biomolecular structures. Furthermore, our approach is fully compatible with fluorescent protein labeling and can, thus, be used in a wide range of studies in cell and membrane biology.