Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design

  1. Ching-Lin Hsieh
  2. Christopher P Ptak
  3. Andrew Tseng
  4. Igor Massahiro de Souza Suguiura
  5. Sean P McDonough
  6. Tepyuda Sritrakul
  7. Ting Li
  8. Yi-Pin Lin
  9. Richard E Gillilan
  10. Robert Oswald  Is a corresponding author
  11. Yung-Fu Chang  Is a corresponding author
  1. Cornell University, United States
  2. New York State Department of Health, United States

Abstract

Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Ching-Lin Hsieh

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher P Ptak

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-0367
  3. Andrew Tseng

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Igor Massahiro de Souza Suguiura

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean P McDonough

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tepyuda Sritrakul

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ting Li

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Pin Lin

    Division of Infectious Disease, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard E Gillilan

    Cornell High Energy Synchrotron Source, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7636-3188
  10. Robert Oswald

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    reo1@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Yung-Fu Chang

    Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, United States
    For correspondence
    yc42@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8902-3089

Funding

Center for Advanced Technology program (478-3400)

  • Yung-Fu Chang

Biotechnology Research and Development Corporation (478-9355)

  • Yung-Fu Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were housed in isolation units approved by the Cornell University Institutional Animal Care and Use Committee (Protocol number: 2015-0133).

Copyright

© 2017, Hsieh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,146
    views
  • 324
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.30051

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.