Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13 which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Data availability
Article and author information
Author details
Funding
Wellcome
- Imre Berger
H2020 European Research Council (ERC-2013-340551)
- Làszlò Tora
Research Councils UK
- Imre Berger
Agence Nationale de la Recherche (ANR-13-BSV8-0021-03)
- Imre Berger
Baden-Württemberg Stiftung
- Imre Berger
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Gupta et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,749
- views
-
- 579
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.