Conjunction of factors triggering waves of seasonal influenza

  1. Ishanu Chattopadhyay
  2. Emre Kiciman
  3. Joshua W Elliott
  4. Jeffrey L Shaman
  5. Andrey Rzhetsky  Is a corresponding author
  1. University of Chicago, United States
  2. Microsoft Research, United States
  3. Columbia University, United States

Abstract

Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population's socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus' antigenic drift over time; (4) the host populations land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies.

Article and author information

Author details

  1. Ishanu Chattopadhyay

    Computation Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emre Kiciman

    Computational Epidemiology and Social Sciences, Microsoft Research, Redmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua W Elliott

    Computation Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey L Shaman

    Department of Environmental Health Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrey Rzhetsky

    Computation Institute, University of Chicago, Chicago, United States
    For correspondence
    arzhetsky@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6959-7405

Funding

Defense Sciences Office, DARPA (W911NF1410333)

  • Andrey Rzhetsky

National Institutes of Health (R01HL122712)

  • Andrey Rzhetsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark Jit, London School of Hygiene & Tropical Medicine, and Public Health England, United Kingdom

Version history

  1. Received: July 26, 2017
  2. Accepted: February 13, 2018
  3. Accepted Manuscript published: February 27, 2018 (version 1)
  4. Version of Record published: March 22, 2018 (version 2)

Copyright

© 2018, Chattopadhyay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,418
    Page views
  • 475
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ishanu Chattopadhyay
  2. Emre Kiciman
  3. Joshua W Elliott
  4. Jeffrey L Shaman
  5. Andrey Rzhetsky
(2018)
Conjunction of factors triggering waves of seasonal influenza
eLife 7:e30756.
https://doi.org/10.7554/eLife.30756

Share this article

https://doi.org/10.7554/eLife.30756

Further reading

    1. Epidemiology and Global Health
    Qixin He, John K Chaillet, Frédéric Labbé
    Research Article

    The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.

    1. Epidemiology and Global Health
    Nora Schmit, Hillary M Topazian ... Azra C Ghani
    Research Article

    Large reductions in the global malaria burden have been achieved, but plateauing funding poses a challenge for progressing towards the ultimate goal of malaria eradication. Using previously published mathematical models of Plasmodium falciparum and Plasmodium vivax transmission incorporating insecticide-treated nets (ITNs) as an illustrative intervention, we sought to identify the global funding allocation that maximized impact under defined objectives and across a range of global funding budgets. The optimal strategy for case reduction mirrored an allocation framework that prioritizes funding for high-transmission settings, resulting in total case reductions of 76% and 66% at intermediate budget levels, respectively. Allocation strategies that had the greatest impact on case reductions were associated with lesser near-term impacts on the global population at risk. The optimal funding distribution prioritized high ITN coverage in high-transmission settings endemic for P. falciparum only, while maintaining lower levels in low-transmission settings. However, at high budgets, 62% of funding was targeted to low-transmission settings co-endemic for P. falciparum and P. vivax. These results support current global strategies to prioritize funding to high-burden P. falciparum-endemic settings in sub-Saharan Africa to minimize clinical malaria burden and progress towards elimination, but highlight a trade-off with ‘shrinking the map’ through a focus on near-elimination settings and addressing the burden of P. vivax.