1. Epidemiology and Global Health
  2. Medicine
Download icon

Conjunction of factors triggering waves of seasonal influenza

  1. Ishanu Chattopadhyay
  2. Emre Kiciman
  3. Joshua W Elliott
  4. Jeffrey L Shaman
  5. Andrey Rzhetsky  Is a corresponding author
  1. University of Chicago, United States
  2. Microsoft Research, United States
  3. Columbia University, United States
Research Article
  • Cited 18
  • Views 3,049
  • Annotations
Cite this article as: eLife 2018;7:e30756 doi: 10.7554/eLife.30756
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population's socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus' antigenic drift over time; (4) the host populations land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies.

Article and author information

Author details

  1. Ishanu Chattopadhyay

    Computation Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emre Kiciman

    Computational Epidemiology and Social Sciences, Microsoft Research, Redmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua W Elliott

    Computation Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey L Shaman

    Department of Environmental Health Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrey Rzhetsky

    Computation Institute, University of Chicago, Chicago, United States
    For correspondence
    arzhetsky@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6959-7405

Funding

Defense Sciences Office, DARPA (W911NF1410333)

  • Andrey Rzhetsky

National Institutes of Health (R01HL122712)

  • Andrey Rzhetsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark Jit, London School of Hygiene & Tropical Medicine, and Public Health England, United Kingdom

Publication history

  1. Received: July 26, 2017
  2. Accepted: February 13, 2018
  3. Accepted Manuscript published: February 27, 2018 (version 1)
  4. Version of Record published: March 22, 2018 (version 2)

Copyright

© 2018, Chattopadhyay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,049
    Page views
  • 437
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Joshua Batson et al.
    Tools and Resources

    Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to a) speciate host mosquito, b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, c) associate animal pathogens with specific blood meal sources, and d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.

    1. Epidemiology and Global Health
    2. Medicine
    Torsten Dahlén et al.
    Research Article

    Background There are multiple known associations between the ABO and RhD blood groups and disease. No systematic population-based studies elucidating associations between a large number of disease categories and blood group have been conducted.

    Methods Using SCANDAT3-S, a comprehensive nationwide blood donation-transfusion database, we modelled outcomes for 1,217 disease categories including 70 million person-years of follow-up, accruing from 5.1 million individuals.

    Results We discovered 49 and 1 associations between a disease and ABO and RhD blood group, respectively, after adjustment for multiple testing. We identified new associations such as kidney stones and blood group B as compared to O. We also expanded previous knowledge on other associations such as pregnancy-induced hypertension and blood group A and AB as compared to O and RhD positive as compared to negative.

    Conclusion Our findings generate strong further support for previously known associations, but also indicate new interesting relations.

    Funding Swedish Research Council.