Bladder cancer associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation

Abstract

RXRA regulates transcription as part of a heterodimer with 14 other nuclear receptors, including the peroxisome proliferator-activated receptors (PPARs). Analysis from the TCGA raised the possibility that hyperactive PPAR signaling, either due to PPAR gamma gene amplification or RXRA hot-spot mutation (S427F/Y) drives 20-25% of human bladder cancers. Here we characterize mutant RXRA, demonstrating it induces enhancer/promoter activity in the context of RXRA/PPAR heterodimers in human bladder cancer cells. Structure-function studies indicate that the RXRA substitution allosterically regulates the PPAR AF2 domain via an aromatic interaction with the terminal tyrosine found in PPARs. In mouse urothelial organoids, PPAR agonism is sufficient to drive growth-factor independent growth in the context of concurrent tumor suppressor loss. Similarly, mutant RXRA stimulates growth-factor independent growth of Trp53/Kdm6a null bladder organoids. Mutant RXRA driven growth of urothelium is reversible by PPAR inhibition, supporting PPARs as targetable drivers of bladder cancer.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Angela M Halstead

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chiraag D Kapadia

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Bolzenius

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Clarence E Chu

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Schriefer

    Genome Technology Access Center, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lukas D Wartman

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5499-8465
  7. Gregory R Bowman

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vivek K Arora

    Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, United States
    For correspondence
    arorav@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1694-9109

Funding

Damon Runyon Cancer Research Foundation (Clinical Investigator)

  • Vivek K Arora

Cancer Research Foundation (Young Investigator)

  • Vivek K Arora

National Cancer Institute (T32 CA113275)

  • Angela M Halstead

National Center for Advancing Translational Sciences (UL1TR000448)

  • Vivek K Arora

National Cancer Institute (P30 CA91842)

  • Andrew Schriefer

National Institute of Diabetes and Digestive and Kidney Diseases (U54DK104279)

  • Chiraag D Kapadia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ross L Levine, Memorial Sloan Kettering Cancer Center, United States

Ethics

Animal experimentation: All mouse experiments were performed in accordance with institutional guidelines and current NIH policies and were approved by the Washington University School of Medicine Institutional Animal Care and Use Committee protocol #20140186.

Version history

  1. Received: July 28, 2017
  2. Accepted: November 10, 2017
  3. Accepted Manuscript published: November 16, 2017 (version 1)
  4. Accepted Manuscript updated: November 17, 2017 (version 2)
  5. Version of Record published: December 7, 2017 (version 3)

Copyright

© 2017, Halstead et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,650
    Page views
  • 447
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela M Halstead
  2. Chiraag D Kapadia
  3. Jennifer Bolzenius
  4. Clarence E Chu
  5. Andrew Schriefer
  6. Lukas D Wartman
  7. Gregory R Bowman
  8. Vivek K Arora
(2017)
Bladder cancer associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation
eLife 6:e30862.
https://doi.org/10.7554/eLife.30862

Share this article

https://doi.org/10.7554/eLife.30862

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.