Computer-guided design of optimal microbial consortia for immune system modulation

  1. Richard R Stein  Is a corresponding author
  2. Takeshi Tanoue
  3. Rose L Szabady
  4. Shakti K Bhattarai
  5. Bernat Olle
  6. Jason M Norman
  7. Wataru Suda
  8. Kenshiro Oshima
  9. Masahira Hattori
  10. Georg K Gerber
  11. Chris Sander
  12. Kenya Honda
  13. Vanni Bucci  Is a corresponding author
  1. Dana-Farber Cancer Institute, United States
  2. RIKEN Institute, Japan
  3. Vedanta Biosciences, Inc, United States
  4. University of Massachusetts, United States
  5. Keio University School of Medicine, Japan
  6. The University of Tokyo, Japan
  7. Brigham and Women's Hospital, United States

Abstract

Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome composition and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contribution of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Richard R Stein

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    stein@jimmy.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5110-6863
  2. Takeshi Tanoue

    Center for Integrative Medical Sciences, RIKEN Institute, Yokohama City, Japan
    Competing interests
    Takeshi Tanoue, Has received support from Vedanta Biosciences, Inc. under research agreement with his institution.
  3. Rose L Szabady

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Rose L Szabady, Is employee of Vedanta Biosciences, Inc.
  4. Shakti K Bhattarai

    Engineering and Applied Sciences PhD Program, University of Massachusetts, Dartmouth, United States
    Competing interests
    No competing interests declared.
  5. Bernat Olle

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Bernat Olle, Is the Chief Executive Officer of Vedanta Biosciences, Inc.
  6. Jason M Norman

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Jason M Norman, Is employee of Vedanta Biosciences, Inc.
  7. Wataru Suda

    Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Kenshiro Oshima

    Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Masahira Hattori

    Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  10. Georg K Gerber

    Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    Georg K Gerber, Is a member of the Scientific Advisory Board of Kaleido, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9149-5509
  11. Chris Sander

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Kenya Honda

    Center for Integrative Medical Sciences, RIKEN Institute, Yokohama City, Japan
    Competing interests
    Kenya Honda, Is a Co-Founder and Scientific Advisory Board Member of Vedanta Biosciences, Inc. Has received support from Vedanta Biosciences, Inc. under research agreements with his institution.
  13. Vanni Bucci

    Engineering and Applied Sciences PhD Program, University of Massachusetts, Dartmouth, United States
    For correspondence
    vanni.bucci@umassd.edu
    Competing interests
    Vanni Bucci, Has received support from Vedanta Biosciences, Inc. under research agreement with his institution.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3257-2922

Funding

National Institutes of Health (P41 GM103504)

  • Richard R Stein
  • Chris Sander

Brigham and Women's Hospital (Precision Medicine Initiative)

  • Georg K Gerber

Defense Advanced Research Projects Agency (BRICS award HR0011-15-C-0094)

  • Georg K Gerber

Human Frontier Science Program (RGP00055/2015)

  • Chris Sander

Takeda Science Foundation

  • Kenya Honda

National Institute of General Medical Sciences (5R01 GM106303)

  • Chris Sander

Japan Agency for Medical Research and Development

  • Kenya Honda

National Institute of Allergy and Infectious Diseases

  • Vanni Bucci

National Science Foundation

  • Vanni Bucci

Core Research for Evolutional Science and Technology

  • Kenya Honda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: 11-strain time-series mouse experiments were performed under ethical approval by RIKEN, Keio and Azabu Universities under protocol H24-9(14) (RIKEN). 4-strain validation mouse work was performed at Brigham and Women's Hospital in Boston, MA in the Massachusetts Host Microbiome Center under IACUC protocol 2016N000141.

Copyright

© 2018, Stein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,850
    views
  • 1,363
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard R Stein
  2. Takeshi Tanoue
  3. Rose L Szabady
  4. Shakti K Bhattarai
  5. Bernat Olle
  6. Jason M Norman
  7. Wataru Suda
  8. Kenshiro Oshima
  9. Masahira Hattori
  10. Georg K Gerber
  11. Chris Sander
  12. Kenya Honda
  13. Vanni Bucci
(2018)
Computer-guided design of optimal microbial consortia for immune system modulation
eLife 7:e30916.
https://doi.org/10.7554/eLife.30916

Share this article

https://doi.org/10.7554/eLife.30916

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.