Salient experiences are represented by unique transcriptional signatures in the mouse brain

  1. Diptendu Mukherjee
  2. Bogna Marta Ignatowska-Jankowska
  3. Eyal Itskovits
  4. Ben Jerry Gonzales
  5. Hagit Turm
  6. Liz Izakson
  7. Doron Haritan
  8. Noa Bleistein
  9. Chen Cohen
  10. Ido Amit
  11. Tal Shay
  12. Brad Grueter
  13. Alon Zaslaver
  14. Ami Citri  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. Weizmann Institute of Science, Israel
  3. Ben-Gurion University of the Negev, Israel
  4. Vanderbilt University School of Medicine, United States

Abstract

It is well established that inducible transcription is essential for the consolidation of salient experiences into long-term memory. However, whether inducible transcription relays information about the identity and affective attributes of the experience being encoded, has not been explored. To this end, we analyzed transcription induced by a variety of rewarding and aversive experiences, across multiple brain regions. Our results describe the existence of robust transcriptional signatures uniquely representing distinct experiences, enabling near-perfect decoding of recent experiences. Furthermore, experiences with shared attributes display commonalities in their transcriptional signatures, exemplified in the representation of valence, habituation and reinforcement. This study introduces the concept of a neural transcriptional code, which represents the encoding of experiences in the mouse brain. This code is comprised of distinct transcriptional signatures that correlate to attributes of the experiences that are being committed to long-term memory.

Article and author information

Author details

  1. Diptendu Mukherjee

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Bogna Marta Ignatowska-Jankowska

    The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eyal Itskovits

    Department of Genetics, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ben Jerry Gonzales

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Hagit Turm

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Liz Izakson

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Doron Haritan

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Noa Bleistein

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Chen Cohen

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Ido Amit

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Tal Shay

    Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Brad Grueter

    Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4224-3866
  13. Alon Zaslaver

    Department of Genetics, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Ami Citri

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    ami.citri@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-0278

Funding

Israel Science Foundation (Personal Grant 393/12 & I-CORE 1796/12)

  • Ami Citri

The Lady Davis Postdoctoral Fellowship (Postdoctoral stipend)

  • Bogna Marta Ignatowska-Jankowska

German-Israeli Foundation for Scientific Research and Development (Young Investigator Award 2299-2291.1./2011)

  • Ami Citri

Brain and Behavior Research Foundation (Young Investigator Award #18795)

  • Ami Citri

Canadian Institute for Advanced Research (Research Support)

  • Ami Citri

Binational United-States Israel Research Foundation (Research Grant #2011266)

  • Ami Citri

Milton Rosenbaum Research Foundation (Research Grant)

  • Ami Citri

National Institutes for Psychobiology in Israel (Research Grant 109-15-16)

  • Ami Citri

Shimon Peres Postdoctoral Award (Postdoctoral stipend)

  • Bogna Marta Ignatowska-Jankowska

ELSC Postdoctoral Award (Postdoctoral stipend)

  • Bogna Marta Ignatowska-Jankowska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#NS-13-13895-3 ; NS-15-14668-3 ; NS-14-14088-3 ; NS-15-14312-3 ; NS-15-14348-3) of the Hebrew University of Jerusalem. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Hebrew University. Every effort was made to minimize suffering.

Copyright

© 2018, Mukherjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,965
    views
  • 1,074
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diptendu Mukherjee
  2. Bogna Marta Ignatowska-Jankowska
  3. Eyal Itskovits
  4. Ben Jerry Gonzales
  5. Hagit Turm
  6. Liz Izakson
  7. Doron Haritan
  8. Noa Bleistein
  9. Chen Cohen
  10. Ido Amit
  11. Tal Shay
  12. Brad Grueter
  13. Alon Zaslaver
  14. Ami Citri
(2018)
Salient experiences are represented by unique transcriptional signatures in the mouse brain
eLife 7:e31220.
https://doi.org/10.7554/eLife.31220

Share this article

https://doi.org/10.7554/eLife.31220

Further reading

    1. Neuroscience
    Kyra Schapiro, JD Rittenberg ... Eve Marder
    Research Article

    Motor systems operate over a range of frequencies and relative timing (phase). We studied the role of the hyperpolarization-activated inward current (Ih) in regulating these features in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, as temperature was altered from 11°C to 21°C. Under control conditions, rhythm frequency increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. Blocking Ih with cesium (Cs+) phase advanced PD offset, LP onset, and LP offset at 11°C, and the latter two further advanced as temperature increased. In Cs+ the frequency increase with temperature diminished and the Q10 of the frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency dynamics became non-monotonic during temperature transitions; frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic ‘jag’. Interestingly, these jags persisted during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in maintaining smooth transitory responses and persistent frequency increases by different mechanisms in the pyloric circuitry during temperature fluctuations.

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Article

    Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.