Salient experiences are represented by unique transcriptional signatures in the mouse brain
Abstract
It is well established that inducible transcription is essential for the consolidation of salient experiences into long-term memory. However, whether inducible transcription relays information about the identity and affective attributes of the experience being encoded, has not been explored. To this end, we analyzed transcription induced by a variety of rewarding and aversive experiences, across multiple brain regions. Our results describe the existence of robust transcriptional signatures uniquely representing distinct experiences, enabling near-perfect decoding of recent experiences. Furthermore, experiences with shared attributes display commonalities in their transcriptional signatures, exemplified in the representation of valence, habituation and reinforcement. This study introduces the concept of a neural transcriptional code, which represents the encoding of experiences in the mouse brain. This code is comprised of distinct transcriptional signatures that correlate to attributes of the experiences that are being committed to long-term memory.
Article and author information
Author details
Funding
Israel Science Foundation (Personal Grant 393/12 & I-CORE 1796/12)
- Ami Citri
The Lady Davis Postdoctoral Fellowship (Postdoctoral stipend)
- Bogna Marta Ignatowska-Jankowska
German-Israeli Foundation for Scientific Research and Development (Young Investigator Award 2299-2291.1./2011)
- Ami Citri
Brain and Behavior Research Foundation (Young Investigator Award #18795)
- Ami Citri
Canadian Institute for Advanced Research (Research Support)
- Ami Citri
Binational United-States Israel Research Foundation (Research Grant #2011266)
- Ami Citri
Milton Rosenbaum Research Foundation (Research Grant)
- Ami Citri
National Institutes for Psychobiology in Israel (Research Grant 109-15-16)
- Ami Citri
Shimon Peres Postdoctoral Award (Postdoctoral stipend)
- Bogna Marta Ignatowska-Jankowska
ELSC Postdoctoral Award (Postdoctoral stipend)
- Bogna Marta Ignatowska-Jankowska
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#NS-13-13895-3 ; NS-15-14668-3 ; NS-14-14088-3 ; NS-15-14312-3 ; NS-15-14348-3) of the Hebrew University of Jerusalem. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Hebrew University. Every effort was made to minimize suffering.
Copyright
© 2018, Mukherjee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,060
- views
-
- 1,082
- downloads
-
- 40
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.