The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets

  1. Han Han
  2. Nicole Monroe
  3. Wesley I Sundquist  Is a corresponding author
  4. Peter S Shen  Is a corresponding author
  5. Christopher P Hill  Is a corresponding author
  1. University of Utah School of Medicine, United States

Abstract

The hexameric AAA ATPase Vps4 drives membrane fission by remodeling and disassembling ESCRT-III filaments. Building upon our earlier 4.3 Å resolution cryo-EM structure (Monroe, Han et al. 2017), we now report a 3.2 Å structure of Vps4 bound to an ESCRT-III peptide substrate. The new structure reveals that the peptide approximates a b-strand conformation whose helical symmetry matches that of the five Vps4 subunits it contacts directly. Adjacent Vps4 subunits make equivalent interactions with successive substrate dipeptides through two distinct classes of side chain binding pockets formed primarily by Vps4 pore loop 1. These pockets accommodate a wide range of residues, while main chain hydrogen bonds may help dictate substrate-binding orientation. The structure supports a 'conveyor belt' model of translocation in which ATP binding allows a Vps4 subunit to join the growing end of the helix and engage the substrate, while hydrolysis and release promotes helix disassembly and substrate release at the lagging end.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Han Han

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Nicole Monroe

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7678-4997
  3. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9988-6021
  4. Peter S Shen

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    peter.shen@biochem.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6256-6910
  5. Christopher P Hill

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    chris@biochem.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6796-7740

Funding

National Institutes of Health (P50 GM082545)

  • Han Han
  • Nicole Monroe
  • Wesley I Sundquist
  • Peter S Shen
  • Christopher P Hill

National Institutes of Health (T32 AI055434)

  • Nicole Monroe

National Institutes of Health (R37 AI051174-16)

  • Nicole Monroe
  • Wesley I Sundquist

National Institutes of Health (R01 GM112080)

  • Nicole Monroe
  • Wesley I Sundquist

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,925
    views
  • 645
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Han Han
  2. Nicole Monroe
  3. Wesley I Sundquist
  4. Peter S Shen
  5. Christopher P Hill
(2017)
The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets
eLife 6:e31324.
https://doi.org/10.7554/eLife.31324

Share this article

https://doi.org/10.7554/eLife.31324

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.