The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

  1. Emma A Morrison
  2. Samuel Bowerman
  3. Kelli L Sylvers
  4. Jeff Wereszczynski  Is a corresponding author
  5. Catherine A Musselman  Is a corresponding author
  1. University of Iowa, United States
  2. Illinois Institute of Technology, United States

Abstract

Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome.

Article and author information

Author details

  1. Emma A Morrison

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6722-7961
  2. Samuel Bowerman

    Department of Physics, Illinois Institute of Technology, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0753-4294
  3. Kelli L Sylvers

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0711-402X
  4. Jeff Wereszczynski

    Department of Physics, Illinois Institute of Technology, Chicago, United States
    For correspondence
    jwereszc@iit.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine A Musselman

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    catherine-musselman@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8356-7971

Funding

National Science Foundation (1452411)

  • Catherine A Musselman

National Science Foundation (1552743)

  • Samuel Bowerman
  • Jeff Wereszczynski

Arnold and Mabel Beckman Foundation (Postdoctoral Fellowship)

  • Emma A Morrison

National Institutes of Health (R35GM119647)

  • Jeff Wereszczynski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Version history

  1. Received: August 23, 2017
  2. Accepted: April 11, 2018
  3. Accepted Manuscript published: April 12, 2018 (version 1)
  4. Version of Record published: May 15, 2018 (version 2)

Copyright

© 2018, Morrison et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,840
    views
  • 668
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma A Morrison
  2. Samuel Bowerman
  3. Kelli L Sylvers
  4. Jeff Wereszczynski
  5. Catherine A Musselman
(2018)
The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome
eLife 7:e31481.
https://doi.org/10.7554/eLife.31481

Share this article

https://doi.org/10.7554/eLife.31481

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.