1. Chromosomes and Gene Expression
  2. Structural Biology and Molecular Biophysics
Download icon

The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

  1. Emma A Morrison
  2. Samuel Bowerman
  3. Kelli L Sylvers
  4. Jeff Wereszczynski  Is a corresponding author
  5. Catherine A Musselman  Is a corresponding author
  1. University of Iowa, United States
  2. Illinois Institute of Technology, United States
Research Article
  • Cited 22
  • Views 2,862
  • Annotations
Cite this article as: eLife 2018;7:e31481 doi: 10.7554/eLife.31481

Abstract

Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome.

Article and author information

Author details

  1. Emma A Morrison

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6722-7961
  2. Samuel Bowerman

    Department of Physics, Illinois Institute of Technology, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0753-4294
  3. Kelli L Sylvers

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0711-402X
  4. Jeff Wereszczynski

    Department of Physics, Illinois Institute of Technology, Chicago, United States
    For correspondence
    jwereszc@iit.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine A Musselman

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    catherine-musselman@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8356-7971

Funding

National Science Foundation (1452411)

  • Catherine A Musselman

National Science Foundation (1552743)

  • Samuel Bowerman
  • Jeff Wereszczynski

Arnold and Mabel Beckman Foundation (Postdoctoral Fellowship)

  • Emma A Morrison

National Institutes of Health (R35GM119647)

  • Jeff Wereszczynski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Publication history

  1. Received: August 23, 2017
  2. Accepted: April 11, 2018
  3. Accepted Manuscript published: April 12, 2018 (version 1)
  4. Version of Record published: May 15, 2018 (version 2)

Copyright

© 2018, Morrison et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,862
    Page views
  • 477
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Io Yamamoto et al.
    Research Article

    Telomeres are nucleoprotein complexes at the ends of chromosomes and are indispensable for the protection and lengthening of terminal DNA. Despite the evolutionarily conserved roles of telomeres, the telomeric double-strand DNA (dsDNA)-binding proteins have evolved rapidly. Here, we identified double-strand telomeric DNA-binding proteins (DTN-1 and DTN-2) in Caenorhabditis elegans as non-canonical telomeric dsDNA-binding proteins. DTN-1 and DTN-2 are paralogous proteins that have three putative MYB-like DNA-binding domains and bind to telomeric dsDNA in a sequence-specific manner. DTN-1 and DTN-2 form complexes with the single-strand telomeric DNA-binding proteins POT-1 and POT-2 and constitutively localize to telomeres. The dtn-1 and dtn-2 genes function redundantly, and their simultaneous deletion results in progressive germline mortality, which accompanies telomere hyper-elongation and chromosomal bridges. Our study suggests that DTN-1 and DTN-2 are core shelterin components in C. elegans telomeres that act as negative regulators of telomere length and are essential for germline immortality.

    1. Chromosomes and Gene Expression
    Mark C Johnson et al.
    Research Article Updated

    Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the ‘S-phase checkpoint’ with implications for understanding checkpoint function in cancers that lack cell cycle controls.