Diverse functions of homologous actin isoforms are defined by their nucleotide, rather than their amino acid sequence

  1. Pavan Vedula
  2. Satoshi Kurosaka
  3. Nicolae Adrian Leu
  4. Yuri I Wolf
  5. Svetlana A Shabalina
  6. Junling Wang
  7. Stephanie Sterling
  8. Dawei Dong
  9. Anna Kashina  Is a corresponding author
  1. University of Pennsylvania, United States
  2. National Institutes of Health, United States

Abstract

β‐ and γ‐cytoplasmic actin are nearly indistinguishable in their amino acid sequence, but are encoded by different genes that play non‐redundant biological roles. The key determinants that drive their functional distinction are unknown. Here we tested the hypothesis that β- and γ-actin functions are defined by their nucleotide, rather than their amino acid sequence, using targeted editing of the mouse genome. Although previous studies have shown that disruption of β-actin gene critically impacts cell migration and mouse embryogenesis, we demonstrate here that generation of a mouse lacking β-actin protein by editing β-actin gene to encode γ-actin protein, and vice versa, does not affect cell migration and/or organism survival. Our data suggest that the essential in vivo function of β-actin is provided by the gene sequence independent of the encoded protein isoform. We propose that this regulation constitutes a global 'silent code' mechanism that controls the functional diversity of protein isoforms.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Pavan Vedula

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-0008
  2. Satoshi Kurosaka

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4365-9003
  3. Nicolae Adrian Leu

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuri I Wolf

    National Center for Biotechnology Information, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Svetlana A Shabalina

    National Center for Biotechnology Information, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Junling Wang

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie Sterling

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dawei Dong

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna Kashina

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    For correspondence
    akashina@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0243-6866

Funding

National Institutes of Health (GM104003)

  • Anna Kashina

National Institutes of Health (GM117984)

  • Anna Kashina

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#805204) of the University of Pennsylvania.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Publication history

  1. Received: August 31, 2017
  2. Accepted: December 13, 2017
  3. Accepted Manuscript published: December 15, 2017 (version 1)
  4. Version of Record published: February 1, 2018 (version 2)
  5. Version of Record updated: February 26, 2018 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,818
    Page views
  • 827
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pavan Vedula
  2. Satoshi Kurosaka
  3. Nicolae Adrian Leu
  4. Yuri I Wolf
  5. Svetlana A Shabalina
  6. Junling Wang
  7. Stephanie Sterling
  8. Dawei Dong
  9. Anna Kashina
(2017)
Diverse functions of homologous actin isoforms are defined by their nucleotide, rather than their amino acid sequence
eLife 6:e31661.
https://doi.org/10.7554/eLife.31661
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ryo Fujisawa et al.
    Research Article Updated

    The p97/Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 are essential to unfold ubiquitylated proteins in many areas of eukaryotic cell biology. In yeast, Cdc48-Ufd1-Npl4 is controlled by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here, we show that mammalian p97-UFD1-NPL4 is governed by a complex interplay between additional p97 cofactors and the number of conjugated ubiquitins. Using reconstituted assays for the disassembly of ubiquitylated CMG (Cdc45-MCM-GINS) helicase by human p97-UFD1-NPL4, we show that the unfoldase has a high ubiquitin threshold for substrate unfolding, which can be reduced by the UBX proteins UBXN7, FAF1, or FAF2. Our data indicate that the UBX proteins function by binding to p97-UFD1-NPL4 and stabilising productive interactions between UFD1-NPL4 and K48-linked chains of at least five ubiquitins. Stimulation by UBXN7 is dependent upon known ubiquitin-binding motifs, whereas FAF1 and FAF2 use a previously uncharacterised coiled-coil domain to reduce the ubiquitin threshold of p97-UFD1-NPL4. We show that deleting the Ubnx7 and Faf1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Hwan Bae et al.
    Research Advance

    Akt is a Ser/Thr protein kinase that plays a central role in metabolism and cancer. Regulation of Akt's activity involves an autoinhibitory intramolecular interaction between its pleckstrin homology (PH) domain and its kinase domain that can be relieved by C-tail phosphorylation. PH domain mutant E17K Akt is a well-established oncogene. Previously, we reported that the conformation of autoinhibited Akt may be shifted by small molecule allosteric inhibitors limiting the mechanistic insights from existing X-ray structures that have relied on such compounds (Chu, Viennet, et al, 2020). Here we discover unexpectedly that a single mutation R86A Akt exhibits intensified autoinhibitory features with enhanced PH domain-kinase domain affinity. Structural and biochemical analysis uncovers the importance of a key interaction network involving Arg86, Glu17, and Tyr18 that controls Akt conformation and activity. Our studies also shed light on the molecular basis for E17K Akt activation as an oncogenic driver.