MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

  1. Saman Hussain
  2. Carl N Wivagg
  3. Piotr Szwedziak
  4. Felix Wong
  5. Kaitlin Schaefer
  6. Thierry Izoré
  7. Lars D Renner
  8. Matthew J Holmes
  9. Yingjie Sun
  10. Alexandre W Bisson-Filho
  11. Suzanne Walker
  12. Ariel Amir
  13. Jan Löwe
  14. Ethan C Garner  Is a corresponding author
  1. Harvard University, United States
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Harvard John A. Paulson School of Engineering and Applied Sciences, United States
  4. Leibniz Institute of Polymer Research, Germany

Abstract

MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape.

Article and author information

Author details

  1. Saman Hussain

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carl N Wivagg

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Piotr Szwedziak

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5766-0873
  4. Felix Wong

    Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2309-8835
  5. Kaitlin Schaefer

    Department of Microbiology and Immunology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Thierry Izoré

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Lars D Renner

    Leibniz Institute of Polymer Research, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew J Holmes

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yingjie Sun

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexandre W Bisson-Filho

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Suzanne Walker

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ariel Amir

    Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139
  13. Jan Löwe

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5218-6615
  14. Ethan C Garner

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    egarner@g.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0141-3555

Funding

National Institutes of Health (DP2AI117923-01)

  • Ethan C Garner

Volkswagen Foundation

  • Lars D Renner
  • Ariel Amir
  • Ethan C Garner

Wellcome (095514/Z/11/Z)

  • Jan Löwe

National Science Foundation (GFRP)

  • Felix Wong

Medical Research Council (U105184326)

  • Jan Löwe

Howard Hughes Medical Institute (International Student Research Fellow)

  • Saman Hussain

National Institutes of Health (R01 GM076710)

  • Suzanne Walker

Searle Scholar Fellowship

  • Ethan C Garner

Alfred P. Sloan Foundation

  • Ariel Amir

Smith Family Award

  • Ethan C Garner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hussain et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,536
    views
  • 1,076
    downloads
  • 193
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saman Hussain
  2. Carl N Wivagg
  3. Piotr Szwedziak
  4. Felix Wong
  5. Kaitlin Schaefer
  6. Thierry Izoré
  7. Lars D Renner
  8. Matthew J Holmes
  9. Yingjie Sun
  10. Alexandre W Bisson-Filho
  11. Suzanne Walker
  12. Ariel Amir
  13. Jan Löwe
  14. Ethan C Garner
(2018)
MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis
eLife 7:e32471.
https://doi.org/10.7554/eLife.32471

Share this article

https://doi.org/10.7554/eLife.32471

Further reading

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.