Mechanistic Insights into the Active Site and Allosteric Communication Pathways in Human Nonmuscle Myosin-2C

  1. Krishna Chinthalapudi
  2. Sarah M Heissler
  3. Matthias Preller
  4. James R Sellers  Is a corresponding author
  5. Dietmar J Manstein  Is a corresponding author
  1. Hannover Medical School, Germany
  2. National Heart, Lung and Blood Institute, National Institutes of Health, United States

Abstract

Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å crystal pre-powerstroke state (ADP·VO4) structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures.

Article and author information

Author details

  1. Krishna Chinthalapudi

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah M Heissler

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthias Preller

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7784-4012
  4. James R Sellers

    Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    sellersj@nhlbi.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6296-564X
  5. Dietmar J Manstein

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    For correspondence
    manstein.dietmar@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0763-0147

Funding

Deutsche Forschungsgemeinschaft (MA 1081_21-1)

  • Dietmar J Manstein

National Institutes of Health (Intramural Funding)

  • James R Sellers

Deutsche Forschungsgemeinschaft (PR 1478_2-1)

  • Matthias Preller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Version history

  1. Received: October 12, 2017
  2. Accepted: December 18, 2017
  3. Accepted Manuscript published: December 19, 2017 (version 1)
  4. Version of Record published: January 2, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,383
    views
  • 237
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Krishna Chinthalapudi
  2. Sarah M Heissler
  3. Matthias Preller
  4. James R Sellers
  5. Dietmar J Manstein
(2017)
Mechanistic Insights into the Active Site and Allosteric Communication Pathways in Human Nonmuscle Myosin-2C
eLife 6:e32742.
https://doi.org/10.7554/eLife.32742

Share this article

https://doi.org/10.7554/eLife.32742

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.