The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration

  1. Aurore Lhonore  Is a corresponding author
  2. Pierre-Henri Commère
  3. Elisa Negroni
  4. Giorgia Pallafacchina
  5. Bertrand Friguet
  6. Jacques Drouin
  7. Margaret Buckingham
  8. Didier Montarras  Is a corresponding author
  1. CNRS UMR 3738, Institut Pasteur, France
  2. Institut Pasteur, France
  3. Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, France
  4. Italian National Research Council (CNR) Neuroscience Institute, Italy
  5. CNRS UMR 8256, INSERM ERL U1164, France
  6. Institut de Recherches Cliniques de Montréal, France

Abstract

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine, (NAC) in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38a MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38a MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplement figures.

The following previously published data sets were used

Article and author information

Author details

  1. Aurore Lhonore

    Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France
    For correspondence
    alhonore@hotmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6371-4455
  2. Pierre-Henri Commère

    Platform of Cytometry, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
  3. Elisa Negroni

    Center for Research in Myology, Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Paris, France
    Competing interests
    No competing interests declared.
  4. Giorgia Pallafacchina

    Italian National Research Council (CNR) Neuroscience Institute, Padova, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9766-5970
  5. Bertrand Friguet

    Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164, Paris, France
    Competing interests
    No competing interests declared.
  6. Jacques Drouin

    Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, Montréal, France
    Competing interests
    No competing interests declared.
  7. Margaret Buckingham

    Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France
    Competing interests
    Margaret Buckingham, Reviewing editor, eLife.
  8. Didier Montarras

    Department of Developmental and Stem Cell Biology, CNRS UMR 3738, CNRS UMR 3738, Institut Pasteur, Paris, France
    For correspondence
    didier.montarras@pasteur.fr
    Competing interests
    No competing interests declared.

Funding

Agence Nationale de la Recherche (REGSAT)

  • Margaret Buckingham

AFM-Téléthon

  • Didier Montarras

AFM-Téléthon (Postdoc Fellowship)

  • Aurore Lhonore

Agence Nationale de la Recherche (ANR-10-LABX-73)

  • Margaret Buckingham

Seventh Framework Programme (OptiStem 223098)

  • Margaret Buckingham

Seventh Framework Programme (Marie Curie IRG 248496)

  • Aurore Lhonore

Fondation pour la Recherche Médicale (Postdoc Fellowship)

  • Aurore Lhonore

Fondation pour la Recherche Médicale (Postdoc Fellowship)

  • Giorgia Pallafacchina

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved and conducted in accordance with the Institut Pasteur animal ethics committee (CEEA Institut Pasteur n{degree sign}2013-0017 and APAFIS #2455 2015 1122133311) following the regulations of the Ministry of Agriculture and the European Community guidelines. All surgery were performed under Ketamine /Xylazine anesthesia and and every effort was made to minimize suffering.

Copyright

© 2018, Lhonore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurore Lhonore
  2. Pierre-Henri Commère
  3. Elisa Negroni
  4. Giorgia Pallafacchina
  5. Bertrand Friguet
  6. Jacques Drouin
  7. Margaret Buckingham
  8. Didier Montarras
(2018)
The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
eLife 7:e32991.
https://doi.org/10.7554/eLife.32991

Share this article

https://doi.org/10.7554/eLife.32991

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.