1. Computational and Systems Biology
  2. Immunology and Inflammation
Download icon

Method for identification of condition-associated public antigen receptor sequences

  1. Mikhail V Pogorelyy
  2. Anastasia A Minervina
  3. Dmitriy M Chudakov
  4. Ilgar Z Mamedov
  5. Yuri B Lebedev  Is a corresponding author
  6. Thierry Mora  Is a corresponding author
  7. Aleksandra M Walczak  Is a corresponding author
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russian Federation
  2. École Normale Supérieure, France
Tools and Resources
  • Cited 21
  • Views 2,298
  • Annotations
Cite this article as: eLife 2018;7:e33050 doi: 10.7554/eLife.33050

Abstract

Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR) recognize antigens in the adaptive immune system. The development of immunoglobulin receptor repertoire sequencing methods makes it possible to perform repertoire-wide disease association studies of antigen receptor sequences. We developed a statistical framework for associating receptors to disease from only a small cohort of patients, with no need for a control cohort. Our method successfully identifies previously validated Cytomegalovirus and type 1 diabetes responsive TCRβ sequences.

Article and author information

Author details

  1. Mikhail V Pogorelyy

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  2. Anastasia A Minervina

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  3. Dmitriy M Chudakov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  4. Ilgar Z Mamedov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  5. Yuri B Lebedev

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    For correspondence
    lebedev_yb@mx.ibch.ru
    Competing interests
    No competing interests declared.
  6. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  7. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    awalczak@lpt.ens.fr
    Competing interests
    Aleksandra M Walczak, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

Russian Science Foundation (15-15-00178)

  • Dmitriy M Chudakov
  • Ilgar Z Mamedov
  • Yuri B Lebedev

European Research Council (724208)

  • Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Publication history

  1. Received: October 24, 2017
  2. Accepted: March 12, 2018
  3. Accepted Manuscript published: March 13, 2018 (version 1)
  4. Version of Record published: March 28, 2018 (version 2)

Copyright

© 2018, Pogorelyy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,298
    Page views
  • 456
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Thomas Stoeger, Luís A Nunes Amaral
    Feature Article

    It is known that research into human genes is heavily skewed towards genes that have been widely studied for decades, including many genes that were being studied before the productive phase of the Human Genome Project. This means that the genes most frequently investigated by the research community tend to be only marginally more important to human physiology and disease than a random selection of genes. Based on an analysis of 10,395 research publications about SARS-CoV-2 that mention at least one human gene, we report here that the COVID-19 literature up to mid-October 2020 follows a similar pattern. This means that a large number of host genes that have been implicated in SARS-CoV-2 infection by four genome-wide studies remain unstudied. While quantifying the consequences of this neglect is not possible, they could be significant.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Antonio Cappuccio et al.
    Tools and Resources

    From cellular activation to drug combinations, immunological responses are shaped by the action of multiple stimuli. Synergistic and antagonistic interactions between stimuli play major roles in shaping immune processes. To understand combinatorial regulation, we present the immune Synergistic/Antagonistic Interaction Learner (iSAIL). iSAIL includes a machine learning classifier to map and interpret interactions, a curated compendium of immunological combination treatment datasets, and their global integration into a landscape of ~30,000 interactions. The landscape is mined to reveal combinatorial control of interleukins, checkpoints, and other immune modulators. The resource helps elucidate the modulation of a stimulus by interactions with other cofactors, showing that TNF has strikingly different effects depending on co-stimulators. We discover new functional synergies between TNF and IFNβ controlling dendritic cell-T cell crosstalk. Analysis of laboratory or public combination treatment studies with this user-friendly web-based resource will help resolve the complex role of interaction effects on immune processes.