1. Computational and Systems Biology
  2. Immunology and Inflammation
Download icon

Method for identification of condition-associated public antigen receptor sequences

  1. Mikhail V Pogorelyy
  2. Anastasia A Minervina
  3. Dmitriy M Chudakov
  4. Ilgar Z Mamedov
  5. Yuri B Lebedev  Is a corresponding author
  6. Thierry Mora  Is a corresponding author
  7. Aleksandra M Walczak  Is a corresponding author
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russian Federation
  2. École Normale Supérieure, France
Tools and Resources
  • Cited 20
  • Views 2,222
  • Annotations
Cite this article as: eLife 2018;7:e33050 doi: 10.7554/eLife.33050

Abstract

Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR) recognize antigens in the adaptive immune system. The development of immunoglobulin receptor repertoire sequencing methods makes it possible to perform repertoire-wide disease association studies of antigen receptor sequences. We developed a statistical framework for associating receptors to disease from only a small cohort of patients, with no need for a control cohort. Our method successfully identifies previously validated Cytomegalovirus and type 1 diabetes responsive TCRβ sequences.

Article and author information

Author details

  1. Mikhail V Pogorelyy

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  2. Anastasia A Minervina

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  3. Dmitriy M Chudakov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  4. Ilgar Z Mamedov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  5. Yuri B Lebedev

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
    For correspondence
    lebedev_yb@mx.ibch.ru
    Competing interests
    No competing interests declared.
  6. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  7. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    awalczak@lpt.ens.fr
    Competing interests
    Aleksandra M Walczak, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

Russian Science Foundation (15-15-00178)

  • Dmitriy M Chudakov
  • Ilgar Z Mamedov
  • Yuri B Lebedev

European Research Council (724208)

  • Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Publication history

  1. Received: October 24, 2017
  2. Accepted: March 12, 2018
  3. Accepted Manuscript published: March 13, 2018 (version 1)
  4. Version of Record published: March 28, 2018 (version 2)

Copyright

© 2018, Pogorelyy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,222
    Page views
  • 447
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Jennifer EL Diaz et al.
    Research Article

    Our ability to discover effective drug combinations is limited, in part by insufficient understanding of how the transcriptional response of two monotherapies results in that of their combination. We analyzed matched time course RNAseq profiling of cells treated with single drugs and their combinations and found that the transcriptional signature of the synergistic combination was unique relative to that of either constituent monotherapy. The sequential activation of transcription factors in time in the gene regulatory network was implicated. The nature of this transcriptional cascade suggests that drug synergy may ensue when the transcriptional responses elicited by two unrelated individual drugs are correlated. We used these results as the basis of a simple prediction algorithm attaining an AUROC of 0.77 in the prediction of synergistic drug combinations in an independent dataset.

    1. Computational and Systems Biology
    Anusorn Mudla et al.
    Research Article

    Cells use molecular circuits to interpret and respond to extracellular cues, such as hormones and cytokines, which are often released in a temporally varying fashion. In this study, we combine microfluidics, time-lapse microscopy, and computational modeling to investigate how the type I interferon (IFN)-responsive regulatory network operates in single human cells to process repetitive IFN stimulation. We found that IFN-α pretreatments lead to opposite effects, priming versus desensitization, depending on input durations. These effects are governed by a regulatory network composed of a fast-acting positive feedback loop and a delayed negative feedback loop, mediated by upregulation of ubiquitin-specific peptidase 18 (USP18). We further revealed that USP18 upregulation can only be initiated at the G1/early S phases of cell cycle upon the treatment onset, resulting in heterogeneous and delayed induction kinetics in single cells. This cell cycle gating provides a temporal compartmentalization of feedback loops, enabling duration-dependent desensitization to repetitive stimulations.