Abstract

Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs).

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [86] and are accessible through GEO Series accession number GSE114702 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114702

The following data sets were generated

Article and author information

Author details

  1. Roman M Stilling

    APC Microbiome Institute, University College Cork, Cork, Ireland
    For correspondence
    roman.stilling@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7637-5851
  2. Gerard M Moloney

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3672-1390
  3. Feargal J Ryan

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    No competing interests declared.
  4. Alan E Hoban

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    No competing interests declared.
  5. Thomaz Bastiaanssen

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    No competing interests declared.
  6. Fergus Shanahan

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    Fergus Shanahan, principal investigator in the APC Microbiome Institute,University College Cork.
  7. Gerard Clarke

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    Gerard Clarke, faculty member or funded investigator of the APC Microbiome Institute. The APC Microbiome Institute has conducted research funded by Pfizer, GlaxoSmithKline, Proctor & Gamble, Mead Johnson, Suntory Wellness, and Cremo.
  8. Marcus J Claesson

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    Marcus J Claesson, faculty member or funded investigator of the APC Microbiome Institute. The APC Microbiome Institute has conducted research funded by Pfizer, GlaxoSmithKline, Proctor & Gamble, Mead Johnson, Suntory Wellness, and Cremo.
  9. Timothy G Dinan

    APC Microbiome Institute, University College Cork, Cork, Ireland
    Competing interests
    Timothy G Dinan, principal investigator in the APC Microbiome Institute, University College Cork. Has been an invited speaker at meetings organized by Servier, Lundbeck, Janssen, and AstraZeneca..
  10. John F Cryan

    APC Microbiome Institute, University College Cork, Cork, Ireland
    For correspondence
    j.cryan@ucc.ie
    Competing interests
    John F Cryan, principal investigator in the APC Microbiome Institute, University College Cork. Has been an invited speaker at meetings organized by Mead Johnson, Yakult, Alkermes, and Janssen..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5887-2723

Funding

Science Foundation Ireland (12/RC/2273)

  • Fergus Shanahan
  • Gerard Clarke
  • Marcus J Claesson
  • Timothy G Dinan
  • John F Cryan

Irish Research Council (GOIPD/2014/355)

  • Roman M Stilling
  • John F Cryan

Irish Health Board

  • Timothy G Dinan
  • John F Cryan

NARSAD (20771)

  • Gerard Clarke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elaine Y Hsiao, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations provided by Laboratory Animal Science and Training (LAST) Ireland. All of the animals were handled according to institutional protocols approved by the Animal Ethics Experimentation Committee (AEEC) of University College Cork (#2015/014) and the Health Products Regulatory Authority (HPRA) Ireland (#AE19130/P023). Every effort was made to minimize suffering and animals were killed humanely.

Version history

  1. Received: October 24, 2017
  2. Accepted: May 15, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 11, 2018 (version 2)

Copyright

© 2018, Stilling et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,887
    views
  • 572
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roman M Stilling
  2. Gerard M Moloney
  3. Feargal J Ryan
  4. Alan E Hoban
  5. Thomaz Bastiaanssen
  6. Fergus Shanahan
  7. Gerard Clarke
  8. Marcus J Claesson
  9. Timothy G Dinan
  10. John F Cryan
(2018)
Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice
eLife 7:e33070.
https://doi.org/10.7554/eLife.33070

Share this article

https://doi.org/10.7554/eLife.33070

Further reading

  1. Mice raised in sterile environments are less social.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.