1. Neuroscience
Download icon

Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans

  1. Ignacio Rebollo  Is a corresponding author
  2. Anne-Dominique Devauchelle
  3. Benoît Béranger
  4. Catherine Tallon-Baudry
  1. École normale supérieure, INSERM, PSL Research University, France
  2. Institut du Cerveau et de la Moelle épinière - ICM, France
Research Article
  • Cited 44
  • Views 6,233
  • Annotations
Cite this article as: eLife 2018;7:e33321 doi: 10.7554/eLife.33321

Abstract

Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics.

Article and author information

Author details

  1. Ignacio Rebollo

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    For correspondence
    ignacio.rebollo@cri-paris.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4119-9955
  2. Anne-Dominique Devauchelle

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Benoît Béranger

    Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Tallon-Baudry

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8480-5831

Funding

H2020 European Research Council (670325)

  • Catherine Tallon-Baudry

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Catherine Tallon-Baudry

DIM cerveau et pensee

  • Ignacio Rebollo

Fondation Bettencourt Schueller

  • Ignacio Rebollo

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Catherine Tallon-Baudry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants received provided written informed consent for participation in the experiment. The study was approved by the ethics committee Comité de Protection des Personnes Ile de France III

Reviewing Editor

  1. Hugo Critchley, University of Sussex, United Kingdom

Publication history

  1. Received: November 3, 2017
  2. Accepted: March 20, 2018
  3. Accepted Manuscript published: March 21, 2018 (version 1)
  4. Version of Record published: May 4, 2018 (version 2)

Copyright

© 2018, Rebollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,233
    Page views
  • 822
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Jorrit S Montijn et al.
    Tools and Resources Updated

    Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.