Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans

  1. Ignacio Rebollo  Is a corresponding author
  2. Anne-Dominique Devauchelle
  3. Benoît Béranger
  4. Catherine Tallon-Baudry
  1. École normale supérieure, INSERM, PSL Research University, France
  2. Institut du Cerveau et de la Moelle épinière - ICM, France

Abstract

Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics.

Article and author information

Author details

  1. Ignacio Rebollo

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    For correspondence
    ignacio.rebollo@cri-paris.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4119-9955
  2. Anne-Dominique Devauchelle

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Benoît Béranger

    Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Tallon-Baudry

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8480-5831

Funding

H2020 European Research Council (670325)

  • Catherine Tallon-Baudry

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Catherine Tallon-Baudry

DIM cerveau et pensee

  • Ignacio Rebollo

Fondation Bettencourt Schueller

  • Ignacio Rebollo

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Catherine Tallon-Baudry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants received provided written informed consent for participation in the experiment. The study was approved by the ethics committee Comité de Protection des Personnes Ile de France III

Copyright

© 2018, Rebollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,412
    views
  • 1,123
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Rebollo
  2. Anne-Dominique Devauchelle
  3. Benoît Béranger
  4. Catherine Tallon-Baudry
(2018)
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
eLife 7:e33321.
https://doi.org/10.7554/eLife.33321

Share this article

https://doi.org/10.7554/eLife.33321

Further reading

    1. Neuroscience
    Simonas Griesius, Amy Richardson, Dimitri Michael Kullmann
    Research Article

    Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.

    1. Neuroscience
    Christine Ahrends, Mark W Woolrich, Diego Vidaurre
    Tools and Resources

    Predicting an individual’s cognitive traits or clinical condition using brain signals is a central goal in modern neuroscience. This is commonly done using either structural aspects, such as structural connectivity or cortical thickness, or aggregated measures of brain activity that average over time. But these approaches are missing a central aspect of brain function: the unique ways in which an individual’s brain activity unfolds over time. One reason why these dynamic patterns are not usually considered is that they have to be described by complex, high-dimensional models; and it is unclear how best to use these models for prediction. We here propose an approach that describes dynamic functional connectivity and amplitude patterns using a Hidden Markov model (HMM) and combines it with the Fisher kernel, which can be used to predict individual traits. The Fisher kernel is constructed from the HMM in a mathematically principled manner, thereby preserving the structure of the underlying model. We show here, in fMRI data, that the HMM-Fisher kernel approach is accurate and reliable. We compare the Fisher kernel to other prediction methods, both time-varying and time-averaged functional connectivity-based models. Our approach leverages information about an individual’s time-varying amplitude and functional connectivity for prediction and has broad applications in cognitive neuroscience and personalised medicine.