Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria

Abstract

Gene control systems sometimes interpret multiple signals to set the expression levels of the genes they regulate. In rare instances, ligand-binding riboswitch aptamers form tandem arrangements to approximate the function of specific two-input Boolean logic gates. Here we report the discovery of riboswitch aptamers for phosphoribosyl pyrophosphate (PRPP) that naturally exist either in singlet arrangements, or occur in tandem with guanine aptamers. Tandem guanine-PRPP aptamers can bind the target ligands, either independently or in combination, to approximate the function expected for an IMPLY Boolean logic gate to regulate transcription of messenger RNAs for de novo purine biosynthesis in bacteria. The existence of sophisticated all-RNA regulatory systems that sense two ancient ribonucleotide derivatives to control synthesis of RNA molecules supports the hypothesis that RNA World organisms could manage a complex metabolic state without the assistance of protein regulatory factors.

Article and author information

Author details

  1. Madeline E Sherlock

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Narasimhan Sudarsan

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shira Stav

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ronald R Breaker

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    ronald.breaker@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2165-536X

Funding

NIH Office of the Director (GM022778)

  • Ronald R Breaker

Howard Hughes Medical Institute (Investigator)

  • Ronald R Breaker

NIH Office of the Director (DE022340)

  • Ronald R Breaker

NIH Office of the Director (T32GM007223)

  • Madeline E Sherlock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Sherlock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,006
    views
  • 684
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeline E Sherlock
  2. Narasimhan Sudarsan
  3. Shira Stav
  4. Ronald R Breaker
(2018)
Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria
eLife 7:e33908.
https://doi.org/10.7554/eLife.33908

Share this article

https://doi.org/10.7554/eLife.33908

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.