Reproduction: Shedding light on spawning in jellyfish

An opsin receptor has a central role in the production and release of eggs by female jellyfish.
  1. Laurinda A Jaffe  Is a corresponding author
  1. University of Connecticut Health Center, United States

For a marine creature about to spawn in the vastness of the ocean, timing is everything. Release gametes before or after everybody else, and chances are the precious cells will drift away without ever encountering their male or female counterparts. In jellyfish, an increase in the amount of sunlight at dawn causes males and females to release sperm and eggs into the water at the same time, therefore improving the chances of fertilization. In female jellyfish, the rise in the amount of sunlight falling on the cells surrounding the oocyte – the future egg – also stimulates the final steps in the process of egg production (Figure 1A; Ikegami et al., 1978; Freeman, 1987). However, the molecular basis of the detection of the light signal has long been a mystery.

The effect of light on oocytes in the jellyfish Clytia hemisphaerica.

(A) An ovary before (left) and 90 minutes after (right) light stimulation. Before light stimulation the ovary contains resting oocytes (as indicated by the presence of a large oocyte nucleus; arrow), which need to transform into mature eggs for fertilization. Light triggers the breakdown of the nuclear envelope and later the release of mature eggs from the ovary. (B) This image of the outer layer of an ovary has a lace-like appearance due to staining of the cell contours in white, with large round oocytes visible behind in grey. In this layer are scattered star-shaped cells that contain both the opsin light receptors and the peptides (labeled in green) that are released from these cells to stimulate the oocytes. In the close-up image on the right, the star-shaped cells are highlighted by staining their characteristic cytoskeleton in pink; the nuclei of the surrounding cells are visible in blue. The left image is about 760 microns across; the right image is about 100 microns across.

IMAGE CREDIT: Evelyn Houliston

Now, in eLife, Evelyn Houliston, Tsuyoshi Momose and colleagues at the Laboratoire de Biologie du Développement de Villefranche-sur-mer – including Gonzalo Quiroga-Artigas as first author and researchers at labs in Japan and Germany – report that they have identified the receptor that performs this role in a species of jellyfish called Clytia hemisphaerica (Quiroga Artigas et al., 2018). This protein belongs to the opsin family of receptors, which are responsible for the detection of light throughout the animal world, including in the visual system of vertebrates. Opsins are also involved in the circadian system of many animals (Cermakian and Sassone-Corsi, 2002). Moreover, both the opsin family and the receptors that transmit the signal for oocyte maturation and ovulation in vertebrates are subgroups of a larger family of receptors called G-protein-coupled receptors.

Opsin genes had previously been identified in other jellyfish species, and their expression detected in the gonads of some of these, so there was a good chance that they were involved controlling reproduction. It was also known that the receptor that triggered spawning in response to light was not located in the oocyte itself, but in a layer of cells adjacent to it (Freeman, 1987). While examining gene expression in this location, Quiroga-Artigas et al. found that one opsin (Opsin9) appeared to be very highly expressed in star-shaped cells in the outer layer of the ovary (Figure 1B). Next, they edited Clytia’s genome with CRISPR/Cas 9 technology to generate jellyfish lacking Opsin9. These animals failed to release eggs in response to light, thus identifying Opsin9 as the light receptor.

In separate work, Houliston, Ryusaku Deguchi (Miyagi University of Education) and co-workers also discovered that cells expressing Opsin9 produce very short peptides which, when released, act on the oocyte to stimulate maturation and ovulation (Takeda et al., 2017). In jellyfish that lack Opsin9, these peptides are not released, which explains why these animals fail to spawn (Quiroga Artigas et al., 2018). However, the details of the mechanism responsible for the secretion of the peptides, and the details of how these peptides then act on the oocytes, remain to be determined.

Across the animal kingdom, the regulatory pathways that control oocyte maturation all seem to be variations on the jellyfish theme, with G-protein-coupled receptors having central roles. In vertebrates, for example, a G-protein-coupled receptor in the pituitary gland controls the release of luteinizing hormone (Stamatiades and Kaiser, 2017), which then travels through the bloodstream to the ovaries, where it acts on another G-protein-coupled receptor to stimulate the final stage of egg production and ovulation (Jaffe and Egbert, 2017). In birds, light-activated opsins play an active role in coordinating seasonal reproduction, but these receptors are present in the brain, not the ovaries (Halford et al., 2009). Learning more about the ways in which light controls spawning in jellyfish is therefore an important step towards the understanding of the origin and evolution of the processes controlling reproduction.

References

Article and author information

Author details

  1. Laurinda A Jaffe

    Laurinda A Jaffe is in the Department of Cell Biology, University of Connecticut Health Center, Farmington, United States

    For correspondence
    ljaffe@uchc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2636-5721

Publication history

  1. Version of Record published:

Copyright

© 2018, Jaffe

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,442
    views
  • 119
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurinda A Jaffe
(2018)
Reproduction: Shedding light on spawning in jellyfish
eLife 7:e34258.
https://doi.org/10.7554/eLife.34258
  1. Further reading

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.