Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States

Abstract

In amyotrophic lateral sclerosis (ALS) and animal models of ALS, including SOD1-G93A mice, disassembly of the neuromuscular synapse precedes motor neuron loss and is sufficient to cause a decline in motor function that culminates in lethal respiratory paralysis. We treated SOD1-G93A mice with an agonist antibody to MuSK, a receptor tyrosine kinase essential for maintaining neuromuscular synapses, to determine whether increasing muscle retrograde signaling would slow nerve terminal detachment from muscle. The agonist antibody, delivered after disease onset, slowed muscle denervation, promoting motor neuron survival, improving motor system output, and extending the lifespan of SOD1-G93A mice. These findings suggest a novel therapeutic strategy for ALS, using an antibody format with clinical precedence, which targets a pathway essential for maintaining attachment of nerve terminals to muscle.

Article and author information

Author details

  1. Sarah Cantor

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Wei Zhang

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Nicolas Delestrée

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Leonor Remédio

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-0024
  5. George Z Mentis

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Steven J Burden

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    steve.burden@med.nyu.edu
    Competing interests
    Steven J Burden, holds a patent (#9,329,182) for 'Method of treating motor neuron disease with an antibody that agonizes MuSK'.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-6891

Funding

ALS Association

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (R37 NS36193)

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (RO1 NS078375)

  • George Z Mentis

National Institute of Neurological Disorders and Stroke (T32 NS86750)

  • Sarah Cantor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved and mice were maintained according to Institutional Animal Use and Care Committee (IACUC protocol number 160425) guidelines at NYU Medical School.

Copyright

© 2018, Cantor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,553
    views
  • 797
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden
(2018)
Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody
eLife 7:e34375.
https://doi.org/10.7554/eLife.34375

Share this article

https://doi.org/10.7554/eLife.34375

Further reading

    1. Neuroscience
    Victoria JH Ritvo, Alex Nguyen ... Kenneth A Norman
    Research Article

    What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings. The model can exhibit integration or differentiation depending on the amount of activity allowed to spread to competitors — inactive memories are not modified, connections to moderately active competitors are weakened (leading to differentiation), and connections to highly active competitors are strengthened (leading to integration). The model also makes several novel predictions — most importantly, that when differentiation occurs as a result of this unsupervised learning mechanism, it will be rapid and asymmetric, and it will give rise to anticorrelated representations in the region of the brain that is the source of the differentiation. Overall, these modeling results provide a computational explanation for a diverse set of seemingly contradictory empirical findings in the memory literature, as well as new insights into the dynamics at play during learning.

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.