Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States

Abstract

In amyotrophic lateral sclerosis (ALS) and animal models of ALS, including SOD1-G93A mice, disassembly of the neuromuscular synapse precedes motor neuron loss and is sufficient to cause a decline in motor function that culminates in lethal respiratory paralysis. We treated SOD1-G93A mice with an agonist antibody to MuSK, a receptor tyrosine kinase essential for maintaining neuromuscular synapses, to determine whether increasing muscle retrograde signaling would slow nerve terminal detachment from muscle. The agonist antibody, delivered after disease onset, slowed muscle denervation, promoting motor neuron survival, improving motor system output, and extending the lifespan of SOD1-G93A mice. These findings suggest a novel therapeutic strategy for ALS, using an antibody format with clinical precedence, which targets a pathway essential for maintaining attachment of nerve terminals to muscle.

Article and author information

Author details

  1. Sarah Cantor

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Wei Zhang

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Nicolas Delestrée

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Leonor Remédio

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-0024
  5. George Z Mentis

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Steven J Burden

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    steve.burden@med.nyu.edu
    Competing interests
    Steven J Burden, holds a patent (#9,329,182) for 'Method of treating motor neuron disease with an antibody that agonizes MuSK'.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-6891

Funding

ALS Association

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (R37 NS36193)

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (RO1 NS078375)

  • George Z Mentis

National Institute of Neurological Disorders and Stroke (T32 NS86750)

  • Sarah Cantor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved and mice were maintained according to Institutional Animal Use and Care Committee (IACUC protocol number 160425) guidelines at NYU Medical School.

Copyright

© 2018, Cantor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,622
    views
  • 809
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden
(2018)
Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody
eLife 7:e34375.
https://doi.org/10.7554/eLife.34375

Share this article

https://doi.org/10.7554/eLife.34375

Further reading

    1. Neuroscience
    Rossella Conti, Céline Auger
    Research Article

    Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.