Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States

Abstract

In amyotrophic lateral sclerosis (ALS) and animal models of ALS, including SOD1-G93A mice, disassembly of the neuromuscular synapse precedes motor neuron loss and is sufficient to cause a decline in motor function that culminates in lethal respiratory paralysis. We treated SOD1-G93A mice with an agonist antibody to MuSK, a receptor tyrosine kinase essential for maintaining neuromuscular synapses, to determine whether increasing muscle retrograde signaling would slow nerve terminal detachment from muscle. The agonist antibody, delivered after disease onset, slowed muscle denervation, promoting motor neuron survival, improving motor system output, and extending the lifespan of SOD1-G93A mice. These findings suggest a novel therapeutic strategy for ALS, using an antibody format with clinical precedence, which targets a pathway essential for maintaining attachment of nerve terminals to muscle.

Article and author information

Author details

  1. Sarah Cantor

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Wei Zhang

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Nicolas Delestrée

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Leonor Remédio

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-0024
  5. George Z Mentis

    Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Steven J Burden

    Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    steve.burden@med.nyu.edu
    Competing interests
    Steven J Burden, holds a patent (#9,329,182) for 'Method of treating motor neuron disease with an antibody that agonizes MuSK'.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-6891

Funding

ALS Association

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (R37 NS36193)

  • Steven J Burden

National Institute of Neurological Disorders and Stroke (RO1 NS078375)

  • George Z Mentis

National Institute of Neurological Disorders and Stroke (T32 NS86750)

  • Sarah Cantor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan Glass, Emory University, United States

Ethics

Animal experimentation: All procedures were approved and mice were maintained according to Institutional Animal Use and Care Committee (IACUC protocol number 160425) guidelines at NYU Medical School.

Version history

  1. Received: December 14, 2017
  2. Accepted: February 2, 2018
  3. Accepted Manuscript published: February 20, 2018 (version 1)
  4. Accepted Manuscript updated: February 20, 2018 (version 2)
  5. Accepted Manuscript updated: February 22, 2018 (version 3)
  6. Version of Record published: March 5, 2018 (version 4)
  7. Version of Record updated: June 7, 2018 (version 5)

Copyright

© 2018, Cantor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,415
    Page views
  • 756
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Cantor
  2. Wei Zhang
  3. Nicolas Delestrée
  4. Leonor Remédio
  5. George Z Mentis
  6. Steven J Burden
(2018)
Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody
eLife 7:e34375.
https://doi.org/10.7554/eLife.34375

Share this article

https://doi.org/10.7554/eLife.34375

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.