1. Microbiology and Infectious Disease
Download icon

Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T Cells

  1. Emilie Battivelli
  2. Matthew S Dahabieh
  3. Mohamed Abdel-Mohsen
  4. J Peter Svensson
  5. Israel Tojal Da Silva
  6. Lillian B Cohn
  7. Andrea Gramatica
  8. Steven Deeks
  9. Warner C Greene
  10. Satish K Pillai
  11. Eric Verdin  Is a corresponding author
  1. Gladstone Institutes, United States
  2. University of California, San Francisco, United States
  3. Karolinska Institutet, Sweden
  4. The Rockefeller University, United States
Research Article
  • Cited 35
  • Views 4,382
  • Annotations
Cite this article as: eLife 2018;7:e34655 doi: 10.7554/eLife.34655

Abstract

Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs.non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.

Article and author information

Author details

  1. Emilie Battivelli

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew S Dahabieh

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohamed Abdel-Mohsen

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. J Peter Svensson

    Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5863-6250
  5. Israel Tojal Da Silva

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lillian B Cohn

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3485-8692
  7. Andrea Gramatica

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven Deeks

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6371-747X
  9. Warner C Greene

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Satish K Pillai

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eric Verdin

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    For correspondence
    EVerdin@buckinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3703-3183

Funding

Center for AIDS Research, University of California, San Francisco and Gladstone Institute of Virology and Immunology

  • Emilie Battivelli
  • Mohamed Abdel-Mohsen

National Institute of Dental and Craniofacial Research (5-31532)

  • Eric Verdin

California HIV/AIDS Research Program

  • Emilie Battivelli

Canadian Institutes of Health Research (201311MFE-321128-179658)

  • Matthew S Dahabieh

Svenska Forskningsrådet Formas (VR2015-02312)

  • J Peter Svensson

National Institute of Allergy and Infectious Diseases (R01Ai117864)

  • Eric Verdin

National Institute on Drug Abuse (1R01DA041742-01)

  • Eric Verdin

National Institute of Dental and Craniofacial Research (1R01DE026010-01)

  • Eric Verdin

National Institute of Allergy and Infectious Diseases (R21AI129636)

  • Mohamed Abdel-Mohsen

Cancerfonden (CAN2016/576)

  • J Peter Svensson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Viviana Simon, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: December 27, 2017
  2. Accepted: April 18, 2018
  3. Accepted Manuscript published: May 1, 2018 (version 1)
  4. Version of Record published: May 29, 2018 (version 2)
  5. Version of Record updated: October 31, 2018 (version 3)

Copyright

© 2018, Battivelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,382
    Page views
  • 917
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Microbiology and Infectious Disease
    Anahita Bakochi et al.
    Research Article Updated

    Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae, and treatment options. Here, we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell-, and plasma proteins in the CSF, where, in particular, a large increase of neutrophil-derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multiprotein LASSO regression model resulted in an 18-protein panel of cell- and tissue-associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen-specific host response patterns in CSF from different disease etiologies to support future classification of pathogen type based on host response patterns in meningitis.

    1. Microbiology and Infectious Disease
    David Ranava et al.
    Research Article

    Integral outer membrane proteins (OMPs) are crucial for the maintenance of the proteobacterial envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OM proteins (OMPs) activates the sigmaE (σE) transcriptional response. σE upregulates OMP-biogenesis factors, including the b-barrel assembly machinery (BAM) that catalyzes OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood OM lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating to OM-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the OM, thus supporting OMP biogenesis and OM integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.