Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T Cells

  1. Emilie Battivelli
  2. Matthew S Dahabieh
  3. Mohamed Abdel-Mohsen
  4. J Peter Svensson
  5. Israel Tojal Da Silva
  6. Lillian B Cohn
  7. Andrea Gramatica
  8. Steven Deeks
  9. Warner C Greene
  10. Satish K Pillai
  11. Eric Verdin  Is a corresponding author
  1. Gladstone Institutes, United States
  2. University of California, San Francisco, United States
  3. Karolinska Institutet, Sweden
  4. The Rockefeller University, United States

Abstract

Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs.non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.

Data availability

All sequencing data generated during this study are included in the Integration sites Source data file 1

Article and author information

Author details

  1. Emilie Battivelli

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew S Dahabieh

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohamed Abdel-Mohsen

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. J Peter Svensson

    Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5863-6250
  5. Israel Tojal Da Silva

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lillian B Cohn

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3485-8692
  7. Andrea Gramatica

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven Deeks

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6371-747X
  9. Warner C Greene

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Satish K Pillai

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eric Verdin

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    For correspondence
    EVerdin@buckinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3703-3183

Funding

Center for AIDS Research, University of California, San Francisco and Gladstone Institute of Virology and Immunology

  • Emilie Battivelli
  • Mohamed Abdel-Mohsen

National Institute of Dental and Craniofacial Research (5-31532)

  • Eric Verdin

California HIV/AIDS Research Program

  • Emilie Battivelli

Canadian Institutes of Health Research (201311MFE-321128-179658)

  • Matthew S Dahabieh

Svenska Forskningsrådet Formas (VR2015-02312)

  • J Peter Svensson

National Institute of Allergy and Infectious Diseases (R01Ai117864)

  • Eric Verdin

National Institute on Drug Abuse (1R01DA041742-01)

  • Eric Verdin

National Institute of Dental and Craniofacial Research (1R01DE026010-01)

  • Eric Verdin

National Institute of Allergy and Infectious Diseases (R21AI129636)

  • Mohamed Abdel-Mohsen

Cancerfonden (CAN2016/576)

  • J Peter Svensson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Viviana Simon, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: December 27, 2017
  2. Accepted: April 18, 2018
  3. Accepted Manuscript published: May 1, 2018 (version 1)
  4. Version of Record published: May 29, 2018 (version 2)
  5. Version of Record updated: October 31, 2018 (version 3)

Copyright

© 2018, Battivelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,380
    Page views
  • 1,063
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emilie Battivelli
  2. Matthew S Dahabieh
  3. Mohamed Abdel-Mohsen
  4. J Peter Svensson
  5. Israel Tojal Da Silva
  6. Lillian B Cohn
  7. Andrea Gramatica
  8. Steven Deeks
  9. Warner C Greene
  10. Satish K Pillai
  11. Eric Verdin
(2018)
Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T Cells
eLife 7:e34655.
https://doi.org/10.7554/eLife.34655

Further reading

    1. Microbiology and Infectious Disease
    Russell P Swift, Rubayet Elahi ... Sean T Prigge
    Research Article Updated

    Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Emma M Briggs, Catarina A Marques ... Keith R Matthews
    Research Article Updated

    African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze–thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.