Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T Cells

  1. Emilie Battivelli
  2. Matthew S Dahabieh
  3. Mohamed Abdel-Mohsen
  4. J Peter Svensson
  5. Israel Tojal Da Silva
  6. Lillian B Cohn
  7. Andrea Gramatica
  8. Steven Deeks
  9. Warner C Greene
  10. Satish K Pillai
  11. Eric Verdin  Is a corresponding author
  1. Gladstone Institutes, United States
  2. University of California, San Francisco, United States
  3. Karolinska Institutet, Sweden
  4. The Rockefeller University, United States

Abstract

Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs.non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.

Data availability

All sequencing data generated during this study are included in the Integration sites Source data file 1

Article and author information

Author details

  1. Emilie Battivelli

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew S Dahabieh

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohamed Abdel-Mohsen

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. J Peter Svensson

    Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5863-6250
  5. Israel Tojal Da Silva

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lillian B Cohn

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3485-8692
  7. Andrea Gramatica

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven Deeks

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6371-747X
  9. Warner C Greene

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Satish K Pillai

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eric Verdin

    Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, United States
    For correspondence
    EVerdin@buckinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3703-3183

Funding

Center for AIDS Research, University of California, San Francisco and Gladstone Institute of Virology and Immunology

  • Emilie Battivelli
  • Mohamed Abdel-Mohsen

National Institute of Dental and Craniofacial Research (5-31532)

  • Eric Verdin

California HIV/AIDS Research Program

  • Emilie Battivelli

Canadian Institutes of Health Research (201311MFE-321128-179658)

  • Matthew S Dahabieh

Svenska Forskningsrådet Formas (VR2015-02312)

  • J Peter Svensson

National Institute of Allergy and Infectious Diseases (R01Ai117864)

  • Eric Verdin

National Institute on Drug Abuse (1R01DA041742-01)

  • Eric Verdin

National Institute of Dental and Craniofacial Research (1R01DE026010-01)

  • Eric Verdin

National Institute of Allergy and Infectious Diseases (R21AI129636)

  • Mohamed Abdel-Mohsen

Cancerfonden (CAN2016/576)

  • J Peter Svensson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Battivelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,913
    views
  • 1,147
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emilie Battivelli
  2. Matthew S Dahabieh
  3. Mohamed Abdel-Mohsen
  4. J Peter Svensson
  5. Israel Tojal Da Silva
  6. Lillian B Cohn
  7. Andrea Gramatica
  8. Steven Deeks
  9. Warner C Greene
  10. Satish K Pillai
  11. Eric Verdin
(2018)
Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T Cells
eLife 7:e34655.
https://doi.org/10.7554/eLife.34655

Share this article

https://doi.org/10.7554/eLife.34655

Further reading

    1. Microbiology and Infectious Disease
    Hebin Liao, Xiaodan Yan ... Yingying Pu
    Research Article

    Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.

    1. Microbiology and Infectious Disease
    Emma Brown, Gemma Swinscoe ... Stephen Griffin
    Research Article Updated

    Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.