Molecular Chaperones: Confirmation for conformational selection

NMR studies settle part of a long-standing debate about the mechanism used by the Hsp70 chaperone to recognize substrates.
  1. Yajun Jiang
  2. Charalampos G Kalodimos  Is a corresponding author
  1. St Jude Children's Research Hospital, United States

Almost every process in biology relies on proteins in one way or another, and most of these proteins need to have a specific three-dimensional structure to carry out their roles. A network of molecular machines – called chaperones – makes sure that proteins tend to end up folded correctly (Balchin et al., 2016), and a chaperone called Hsp70 is a central hub in this network.

Hsp70 has a domain that binds to substrates at one end (Mayer and Bukau, 2005), and a domain that binds to nucleotides like ATP at the other end. The chaperone’s affinity for substrates decreases when ATP binds to this domain, and it increases again when the ATP is broken down by hydrolysis to yield ADP. Importantly, Hsp70 does not work alone; another protein called Hsp40 both helps to deliver substrates to Hsp70 and also catalyzes the hydrolysis of ATP.

However, despite much progress in recent years (Clerico et al., 2015; Mayer and Kityk, 2015), major questions remain about the interactions between Hsp70 and its substrates. For instance, does Hsp70 passively bind to exposed segments of unfolded proteins, as proposed in the ‘conformational selection’ hypothesis, or does it actively unfold misfolded substrates, as proposed by the ‘induced fit’ hypothesis? Now, in eLife, Ashok Sekhar, Lewis Kay and colleagues report an answer to this long-standing question (Sekhar et al., 2018).

It has proven challenging to decide between these two hypotheses, partly because chaperones are highly dynamic molecular machines, which limits the number of techniques that can be used to study them in action. Fortunately, NMR spectroscopy provided a perfect solution to tackle this problem (Kay, 2016; Huang and Kalodimos, 2017).

According to the conformational selection hypothesis, the substrates switch between being folded and unfolded, and Hsp70 selectively binds to the unfolded state (Figure 1A). The induced fit hypothesis, however, proposes that Hsp70 binds to a folded or misfolded substrate and then unfolds it (Figure 1B). Therefore, if someone could directly detect a substrate switching between an unfolded state and an Hsp70 bound state, that would be evidence for the conformational selection hypothesis. No such exchange should occur if the induced fit model is correct.

Cartoon illustrations of the conformational selection and induced fit mechanisms.

(A) In the conformational selection mechanism, the substrate (blue) switches between different conformations, and the chaperone (green) selectively interacts with one of these conformations. (B). In the induced fit mechanism, the chaperone directly interacts with the substrate, irrespective of the latter's conformation, and then changes its conformation.

Using advanced NMR methodologies, Sekhar et al. – who are based at the University of Toronto, the Weizmann Institute of Science, the École Normale Supérieure in Paris and the Hospital for Sick Children, also in Toronto – could keep track of two processes – magnetization exchange and chemical exchange – as Hsp70 interacted with a model substrate. Roughly speaking, these two processes can be used to measure conformational changes undergone by the substrate during its interaction with Hsp70.

Sekhar et al. found that Hsp70 from humans and a related bacterial chaperone called DnaK both interact with substrates through the conformational selection mechanism. It was already known that DnaK behaves in a similar way to human Hsp70 (Clerico et al., 2015; Mayer and Kityk, 2015). The results of Sekhar et al. suggest, therefore, that the Hsp70 chaperone machinery prevents the misfolding of proteins by selectively binding to unfolded substrates instead of actively unfolding substrates that have misfolded. The methods reported by Sekhar et al. could also be used to study other chaperone systems such as the Trigger Factor (Saio et al., 2014) and SecB (Huang et al., 2016), both of which capture their substrate proteins in an unfolded state.

In vivo, the Hsp70 machinery needs to process long proteins consisting of more than 300 to 400 amino acids (Balchin et al., 2016). Yet Hsp70 has just one relatively small substrate-binding site that can accommodate only seven to eight amino acids. How can Hsp70 fulfill such a challenging task? It is thought that Hsp40 helps deliver substrates to Hsp70, and so it will be important to examine the exact role that Hsp40 plays in recognizing substrates and delivering them to Hsp70. Will the current model, which works for isolated Hsp70, still apply when Hsp40 and the rest of the Hsp70 machinery are present? Many key questions remain unanswered, yet this latest study gives hope that NMR spectroscopy is well suited to address these questions.

References

Article and author information

Author details

  1. Yajun Jiang

    Yajun Jiang is in the Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0886-292X
  2. Charalampos G Kalodimos

    Charalampos G Kalodimos is in the Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, United States

    For correspondence
    babis.kalodimos@stjude.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6354-2796

Publication history

  1. Version of Record published:

Copyright

© 2018, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,604
    views
  • 195
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yajun Jiang
  2. Charalampos G Kalodimos
(2018)
Molecular Chaperones: Confirmation for conformational selection
eLife 7:e34923.
https://doi.org/10.7554/eLife.34923

Further reading

    1. Structural Biology and Molecular Biophysics
    Pierce Eggan, Sharona E Gordon, William N Zagotta
    Research Article

    Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG. In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.

    1. Structural Biology and Molecular Biophysics
    Chris van Hoorn, Andrew P Carter
    Research Article

    Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet’s filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.