Abstract

CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5-30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain tumour-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Newly generated cell lines will be made available on request.

Article and author information

Author details

  1. Pooran Singh Dewari

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  2. Benjamin Southgate

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Katrina Mccarten

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  4. German Monogarov

    German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  5. Eoghan O'Duibhir

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  6. Niall Quinn

    Edinburgh Cancer Research UK Centre Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  7. Ashley Tyrer

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  8. Marie-Christin Leitner

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  9. Colin Plumb

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  10. Maria Kalantzaki

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  11. Carla Blin

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  12. Rebecca Finch

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  13. Raul Bardini Bressan

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5673-9563
  14. Gillian Morrison

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  15. Ashley M Jacobi

    Integrated DNA Technologies, Inc, Coralville, United States
    Competing interests
    Ashley M Jacobi, employed by Integrated DNA Technologies (IDT), who sells reagents similar to some described herein. IDT is, however, not a publicly traded company and the authors do not own any shares or equity in IDT. No other authors have any financial interests or relationships with IDT; nor do they own any shares or equity.
  16. Mark A Behlke

    Integrated DNA Technologies, Inc, Coralville, United States
    Competing interests
    Mark A Behlke, employed by Integrated DNA Technologies (IDT), who sells reagents similar to some described herein. IDT is, however, not a publicly traded company and the authors do not own any shares or equity in IDT. No other authors have any financial interests or relationships with IDT; nor do they own any shares or equity.
  17. Alex von Kriegsheim

    Edinburgh Cancer Research UK Centre Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  18. Simon Tomlinson

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  19. Jeroen Krijgsveld

    German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  20. Steven M Pollard

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    steven.pollard@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6428-0492

Funding

Cancer Research UK (A17368)

  • Pooran Singh Dewari
  • Benjamin Southgate
  • Eoghan O'Duibhir
  • Steven M Pollard

Medical Research Council (BB/M018040/1)

  • Pooran Singh Dewari
  • Steven M Pollard

Biotechnology and Biological Sciences Research Council (BB/M018040/1)

  • Pooran Singh Dewari
  • Steven M Pollard

Engineering and Physical Sciences Research Council (BB/M018040/1)

  • Pooran Singh Dewari
  • Steven M Pollard

Brain Tumour Charity (GN-000358)

  • Pooran Singh Dewari
  • Steven M Pollard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Dewari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,315
    views
  • 1,926
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pooran Singh Dewari
  2. Benjamin Southgate
  3. Katrina Mccarten
  4. German Monogarov
  5. Eoghan O'Duibhir
  6. Niall Quinn
  7. Ashley Tyrer
  8. Marie-Christin Leitner
  9. Colin Plumb
  10. Maria Kalantzaki
  11. Carla Blin
  12. Rebecca Finch
  13. Raul Bardini Bressan
  14. Gillian Morrison
  15. Ashley M Jacobi
  16. Mark A Behlke
  17. Alex von Kriegsheim
  18. Simon Tomlinson
  19. Jeroen Krijgsveld
  20. Steven M Pollard
(2018)
An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein
eLife 7:e35069.
https://doi.org/10.7554/eLife.35069

Share this article

https://doi.org/10.7554/eLife.35069

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.