1. Biochemistry and Chemical Biology
  2. Immunology and Inflammation
Download icon

Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen

  1. Neel H Shah
  2. Mark Löbel
  3. Arthur Weiss
  4. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States
Research Advance
  • Cited 16
  • Views 3,463
  • Annotations
Cite this article as: eLife 2018;7:e35190 doi: 10.7554/eLife.35190

Abstract

The specificity of tyrosine kinases is predominantly attributed to localization effects dictated by non-catalytic domains. We developed a method to profile the specificities of tyrosine kinases by combining bacterial surface-display of peptide libraries with next-generation sequencing. Using this, we showed that the tyrosine kinase ZAP-70, which is critical for T cell signaling, discriminates substrates through an electrostatic selection mechanism encoded within its catalytic domain (Shah et al. 2016). Here, we expand this high-throughput platform to analyze the intrinsic specificity of any tyrosine kinase domain against thousands of peptides derived from human tyrosine phosphorylation sites. Using this approach, we find a difference in the electrostatic recognition of substrates between the closely-related Src-family kinases Lck and c-Src. This divergence likely reflects the specialization of Lck to act in concert with ZAP-70 in T cell signaling. These results point to the importance of direct recognition at the kinase active site in fine-tuning specificity.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Neel H Shah

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1186-0626
  2. Mark Löbel

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Arthur Weiss

    Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2414-9024
  4. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

Damon Runyon Cancer Research Foundation

  • Neel H Shah

National Institutes of Health (P01 AI091580)

  • Arthur Weiss

German Academic Exchange Service London

  • Mark Löbel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A. Cole, Harvard Medical School, United States

Publication history

  1. Received: January 19, 2018
  2. Accepted: March 15, 2018
  3. Accepted Manuscript published: March 16, 2018 (version 1)
  4. Version of Record published: April 6, 2018 (version 2)

Copyright

© 2018, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,463
    Page views
  • 521
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Sydney P Thomas, John M Denu
    Research Article

    Short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are produced in large quantities by the gut microbiome and contribute to a wide array of physiological processes. While the underlying mechanisms are largely unknown, many effects of SCFAs have been traced to changes in the cell’s epigenetic state. Here, we systematically investigate how SCFAs alter the epigenome. Using quantitative proteomics of histone modification states, we identified rapid and sustained increases in histone acetylation after addition of butyrate or propionate, but not acetate. While decades of prior observations would have suggested that hyperacetylation induced by SCFAs are attributed to inhibition of histone deacetylases (HDACs), we found that propionate and butyrate instead activate the acetyltransferase p300. Propionate and butyrate are rapidly converted to the corresponding acyl-CoAs which are then used by p300 to catalyze auto-acylation of the autoinhibitory loop, activating the enzyme for histone/protein acetylation. This data challenges the long-held belief that SCFAs mainly regulate chromatin by inhibiting HDACs, and instead reveals a previously unknown mechanism of HAT activation that can explain how an influx of low levels of SCFAs alters global chromatin states.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Krishna S Ghanta et al.
    Research Article

    Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5′-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.