Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen

  1. Neel H Shah
  2. Mark Löbel
  3. Arthur Weiss
  4. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States

Abstract

The specificity of tyrosine kinases is predominantly attributed to localization effects dictated by non-catalytic domains. We developed a method to profile the specificities of tyrosine kinases by combining bacterial surface-display of peptide libraries with next-generation sequencing. Using this, we showed that the tyrosine kinase ZAP-70, which is critical for T cell signaling, discriminates substrates through an electrostatic selection mechanism encoded within its catalytic domain (Shah et al. 2016). Here, we expand this high-throughput platform to analyze the intrinsic specificity of any tyrosine kinase domain against thousands of peptides derived from human tyrosine phosphorylation sites. Using this approach, we find a difference in the electrostatic recognition of substrates between the closely-related Src-family kinases Lck and c-Src. This divergence likely reflects the specialization of Lck to act in concert with ZAP-70 in T cell signaling. These results point to the importance of direct recognition at the kinase active site in fine-tuning specificity.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Neel H Shah

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1186-0626
  2. Mark Löbel

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Arthur Weiss

    Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2414-9024
  4. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

Damon Runyon Cancer Research Foundation

  • Neel H Shah

National Institutes of Health (P01 AI091580)

  • Arthur Weiss

German Academic Exchange Service London

  • Mark Löbel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A. Cole, Harvard Medical School, United States

Version history

  1. Received: January 19, 2018
  2. Accepted: March 15, 2018
  3. Accepted Manuscript published: March 16, 2018 (version 1)
  4. Version of Record published: April 6, 2018 (version 2)

Copyright

© 2018, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,390
    views
  • 709
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neel H Shah
  2. Mark Löbel
  3. Arthur Weiss
  4. John Kuriyan
(2018)
Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen
eLife 7:e35190.
https://doi.org/10.7554/eLife.35190

Share this article

https://doi.org/10.7554/eLife.35190

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.