The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation

  1. Jean-Michel Arbona
  2. Arach Goldar
  3. Olivier Hyrien
  4. Alain Arneodo
  5. Benjamin Audit  Is a corresponding author
  1. CNRS, Ecole Normale Supérieure de Lyon, France
  2. Ibitec-S, CEA, France
  3. Institut de Biologie de l'Ecole Normale Supérieure, France
  4. Laboratoire Ondes et Matière d'Aquitaine, France

Abstract

The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics.

Data availability

All experimental data analyzed in this study are included in the manuscript. Source data files have been provided for Figure 2.

Article and author information

Author details

  1. Jean-Michel Arbona

    Laboratoire de Physique, ENS de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Arach Goldar

    Ibitec-S, CEA, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivier Hyrien

    Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8879-675X
  4. Alain Arneodo

    Université de Bordeaux - CNRS UMR5798, Laboratoire Ondes et Matière d'Aquitaine, Talence, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Audit

    Laboratoire de Physique, ENS de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Lyon, France
    For correspondence
    benjamin.audit@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2683-9990

Funding

Institut National Du Cancer (PLBIO16-302)

  • Olivier Hyrien
  • Benjamin Audit

Fondation pour la Recherche Médicale (DEI20151234404)

  • Arach Goldar
  • Olivier Hyrien
  • Benjamin Audit

Agence Nationale de la Recherche (ANR-15-CE12-0011-01)

  • Olivier Hyrien
  • Alain Arneodo
  • Benjamin Audit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Arbona et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,924
    views
  • 299
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Michel Arbona
  2. Arach Goldar
  3. Olivier Hyrien
  4. Alain Arneodo
  5. Benjamin Audit
(2018)
The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation
eLife 7:e35192.
https://doi.org/10.7554/eLife.35192

Share this article

https://doi.org/10.7554/eLife.35192

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.