The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h

  1. Nathan Gamarra
  2. Stephanie L Johnson
  3. Michael J Trnka
  4. Alma L Burlingame
  5. Geeta J Narlikar  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

ISWI family chromatin remodeling motors use sophisticated autoinhibition mechanisms to control nucleosome sliding. Yet how the different autoinhibitory domains are regulated is not well understood. Here we show that an acidic patch formed by histones H2A and H2B of the nucleosome relieves the autoinhibition imposed by the AutoN and the NegC regions of the human ISWI remodeler SNF2h. Further, by single molecule FRET we show that the acidic patch helps control the distance travelled per translocation event. We propose a model in which the acidic patch activates SNF2h by providing a landing pad for the NegC and AutoN auto-inhibitory domains. Interestingly, the acidic patch also inhibits the INO80 complex, indicating that this substrate feature can regulate remodeling enzymes with substantially different mechanisms. We therefore hypothesize that regulating access to the acidic patch of the nucleosome plays a key role in coordinating the activities of different remodelers in the cell.

Data availability

Relevant source data is provided in the main and supplemental figures. Crosslinked residue pair identification along with number of spectral counts per identification are reported in Supplemental File 1, as well as in a web resource with links to annotated product ion spectra (see Experimental Methods). Raw mass spectrometry files are available on the Massive server (UCSD). Code used for the analysis of smFRET data can be found at the following link, which is also found in the main text. https://github.com/stephlj/Traces

The following data sets were generated

Article and author information

Author details

  1. Nathan Gamarra

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2430-8662
  2. Stephanie L Johnson

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Michael J Trnka

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Alma L Burlingame

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Geeta J Narlikar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Geeta.Narlikar@ucsf.edu
    Competing interests
    Geeta J Narlikar, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1920-0147

Funding

Leukemia and Lymphoma Society (Carrer Development Program Fellow Award)

  • Stephanie L Johnson

National Science Foundation (Predoctoral Fellowship)

  • Nathan Gamarra

National Institute of General Medical Sciences (R01GM073767)

  • Geeta J Narlikar

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

  • Alma L Burlingame

University of California, San Francisco (Program for Breakthrough Biomedical Research (PBBR))

  • Alma L Burlingame

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Publication history

  1. Received: January 25, 2018
  2. Accepted: April 16, 2018
  3. Accepted Manuscript published: April 17, 2018 (version 1)
  4. Version of Record published: May 30, 2018 (version 2)
  5. Version of Record updated: August 10, 2018 (version 3)

Copyright

© 2018, Gamarra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,511
    Page views
  • 599
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathan Gamarra
  2. Stephanie L Johnson
  3. Michael J Trnka
  4. Alma L Burlingame
  5. Geeta J Narlikar
(2018)
The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h
eLife 7:e35322.
https://doi.org/10.7554/eLife.35322

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Joseph V Geisberg, Zarmik Moqtaderi ... Kevin Struhl
    Research Advance

    Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' UTRs. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at the nucleotide level within clusters, but not between them. Pol II occupancy increases just downstream of the most speed-sensitive poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that 1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, 2) poly(A) site clusters are linked to the local elongation rate and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, 3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and 4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Yu Chen, Claudia Cattoglio ... Xavier Darzacq
    Research Article Updated

    Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro – the hypoxia response element (HRE) – but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live-cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, another main determinant of chromatin binding and diffusion behavior is the AD-containing intrinsically disordered region (IDR). Using Cut&Run and RNA-seq as orthogonal genomic approaches, we also confirmed IDR-dependent binding and activation of a specific subset of HIF target genes. These findings reveal a previously unappreciated role of IDRs in regulating the TF search and binding process that contribute to functional target site selectivity on chromatin.