The multi-subunit GID/CTLH E3 ligase promotes proliferation and targets the transcription factor Hbp1 for degradation

Abstract

In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files contain the complete lists of mass spectrometry results and SAINT scores

Article and author information

Author details

  1. Fabienne Lampert

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    For correspondence
    fabienne.lampert@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana Stafa

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Algera Goga

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Varis Soste

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Samuel Gilberto

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Natacha Olieric

    Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Paola Picotti

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Markus Stoffel

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthias Peter

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    For correspondence
    matthias.peter@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2160-6824

Funding

Swiss National Science Foundation

  • Markus Stoffel
  • Matthias Peter

Human Frontier Science Program (LT- 000376/2014-L)

  • Fabienne Lampert

European Research Council

  • Matthias Peter

ETH Zurich

  • Paola Picotti
  • Markus Stoffel
  • Matthias Peter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University Frankfurt, Germany

Ethics

Animal experimentation: All animal experiments were approved by the Kantonale Veterinäramt Zürich.

Version history

  1. Received: January 30, 2018
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: June 18, 2018 (version 1)
  4. Version of Record published: July 9, 2018 (version 2)

Copyright

© 2018, Lampert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,305
    views
  • 884
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabienne Lampert
  2. Diana Stafa
  3. Algera Goga
  4. Martin Varis Soste
  5. Samuel Gilberto
  6. Natacha Olieric
  7. Paola Picotti
  8. Markus Stoffel
  9. Matthias Peter
(2018)
The multi-subunit GID/CTLH E3 ligase promotes proliferation and targets the transcription factor Hbp1 for degradation
eLife 7:e35528.
https://doi.org/10.7554/eLife.35528

Share this article

https://doi.org/10.7554/eLife.35528

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.