Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2

  1. Melissa Kane
  2. Stephanie V Rebensburg
  3. Matthew A Takata
  4. Trinity M Zang
  5. Masahiro Yamashita
  6. Mamuka Kvaratskhelia
  7. Paul D Bieniasz  Is a corresponding author
  1. Rockefeller University, United States
  2. University of Colorado Denver, United States
  3. Aaron Diamond AIDS Research Center, United States

Abstract

HIV-1 accesses the nuclear DNA of interphase cells via a poorly defined process involving functional interactions between the capsid protein (CA) and nucleoporins (Nups). Here, we show that HIV-1 CA can bind multiple Nups, and that both natural and manipulated variation in Nup levels impacts HIV-1 infection in a manner that is strikingly dependent on cell-type, cell-cycle, and cyclophilin A (CypA). We also show that Nups mediate the function of the antiviral protein MX2, and that MX2 can variably inhibit non-viral NLS function. Remarkably, both enhancing and inhibiting effects of cyclophilin A and MX2 on various HIV-1 CA mutants could be induced or abolished by manipulating levels of the Nup93 subcomplex, the Nup62 subcomplex, NUP88, NUP21, RANBP2, or NUP153. Our findings suggest that several Nup-dependent 'pathways' are variably exploited by HIV-1 to target host DNA in a cell-type, cell-cycle, CypA and CA-sequence dependent manner, and are differentially inhibited by MX2.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melissa Kane

    Laboratory of Retrovirology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephanie V Rebensburg

    Division of Infectious Diseases, University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew A Takata

    Laboratory of Retrovirology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Trinity M Zang

    Laboratory of Retrovirology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Masahiro Yamashita

    Aaron Diamond AIDS Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mamuka Kvaratskhelia

    Division of Infectious Diseases, University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul D Bieniasz

    Laboratory of Retrovirology, Rockefeller University, New York, United States
    For correspondence
    pbieniasz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2368-3719

Funding

Howard Hughes Medical Institute (Investigator Award)

  • Paul D Bieniasz

National Institute of Allergy and Infectious Diseases (R3764003)

  • Paul D Bieniasz

National Institute of Allergy and Infectious Diseases (R01AI100720)

  • Masahiro Yamashita

National Institute of Allergy and Infectious Diseases (R01AI062520)

  • Mamuka Kvaratskhelia

National Institute of Allergy and Infectious Diseases (F32AI116263)

  • Melissa Kane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Viviana Simon, Icahn School of Medicine at Mount Sinai, United States

Version history

  1. Received: February 8, 2018
  2. Accepted: August 6, 2018
  3. Accepted Manuscript published: August 7, 2018 (version 1)
  4. Version of Record published: August 20, 2018 (version 2)

Copyright

© 2018, Kane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,659
    views
  • 767
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa Kane
  2. Stephanie V Rebensburg
  3. Matthew A Takata
  4. Trinity M Zang
  5. Masahiro Yamashita
  6. Mamuka Kvaratskhelia
  7. Paul D Bieniasz
(2018)
Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2
eLife 7:e35738.
https://doi.org/10.7554/eLife.35738

Share this article

https://doi.org/10.7554/eLife.35738

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.