Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events

  1. David Ramos-Vicente
  2. Jie Ji
  3. Esther Gratacòs-Batlle
  4. Gemma Gou
  5. Rita Reig-Viader
  6. Javier Luís
  7. Demian Burguera
  8. Enrique Navas-Perez
  9. Jordi García-Fernández
  10. Pablo Fuentes-Prior
  11. Hector Escriva
  12. Nerea Roher
  13. David Soto
  14. Àlex Bayés  Is a corresponding author
  1. Biomedical Research Institute Sant Pau, Spain
  2. Universitat Autònoma de Barcelona, Spain
  3. University of Barcelona, Spain
  4. Sorbonne Université, CNRS, France

Abstract

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, Figure 1 - figure supplement 1, Figure 1 - figure supplement 3, Figure 1 - figure supplement 4, Figure2, Figure 4, Figure 4 - figure supplement 1 and Figure 4 - figure supplement 3.

The following previously published data sets were used
    1. Sea Urchin Genome Sequencing Consortium
    2. Sodergren E
    3. Weinstock GM
    4. Davidson EH
    5. Cameron RA
    6. Gibbs RA
    7. Angerer RC
    8. Angerer LM
    9. Arnone MI
    10. Burgess DR
    11. Burke RD
    12. Coffman JA
    13. Dean M
    14. Elphick MR
    15. Ettensohn CA
    16. Foltz KR
    17. Hamdoun A
    18. Hynes RO
    19. Klein WH
    20. Marzluff W
    21. McClay DR
    22. Morris RL
    23. Mushegian A
    24. Rast JP
    25. Smith LC
    26. Thorndyke MC
    27. Vacquier VD
    28. Wessel GM
    29. Wray G
    30. Zhang L
    31. Elsik CG
    32. Ermolaeva O
    33. Hlavina W
    34. Hofmann G
    35. Kitts P
    36. Landrum MJ
    37. Mackey AJ
    38. Maglott D
    39. Panopoulou G
    40. Poustka AJ
    41. Pruitt K
    42. Sapojnikov V
    43. Song X
    44. Souvorov A
    45. Solovyev V
    46. Wei Z
    47. Whittaker CA
    48. Worley K
    49. Durbin KJ
    50. Shen Y
    51. Fedrigo O
    52. Garfield D
    53. Haygood R
    54. Primus A
    55. Satija R
    56. Severson T
    57. Gonzalez-Garay ML
    58. Jackson AR
    59. Milosavljevic A
    60. Tong M
    61. Killian CE
    62. Livingston BT
    63. Wilt FH
    64. Adams N
    65. Bellé R
    66. Carbonneau S
    67. Cheung R
    68. Cormier P
    69. Cosson B
    70. Croce J
    71. Fernandez-Guerra A
    72. Genevière AM
    73. Goel M
    74. Kelkar H
    75. Morales J
    76. Mulner-Lorillon O
    77. Robertson AJ
    78. Goldstone JV
    79. Cole B
    80. Epel D
    81. Gold B
    82. Hahn ME
    83. Howard-Ashby M
    84. Scally M
    85. Stegeman JJ
    86. Allgood EL
    87. Cool J
    88. Judkins KM
    89. McCafferty SS
    90. Musante AM
    91. Obar RA
    92. Rawson AP
    93. Rossetti BJ
    94. Gibbons IR
    95. Hoffman MP
    96. Leone A
    97. Istrail S
    98. Materna SC
    99. Samanta MP
    100. Stolc V
    101. Tongprasit W
    102. Tu Q
    103. Bergeron KF
    104. Brandhorst BP
    105. Whittle J
    106. Berney K
    107. Bottjer DJ
    108. Calestani C
    109. Peterson K
    110. Chow E
    111. Yuan QA
    112. Elhaik E
    113. Graur D
    114. Reese JT
    115. Bosdet I
    116. Heesun S
    117. Marra MA
    118. Schein J
    119. Anderson MK
    120. Brockton V
    121. Buckley KM
    122. Cohen AH
    123. Fugmann SD
    124. Hibino T
    125. Loza-Coll M
    126. Majeske AJ
    127. Messier C
    128. Nair SV
    129. Pancer Z
    130. Terwilliger DP
    131. Agca C
    132. Arboleda E
    133. Chen N
    134. Churcher AM
    135. Hallböök F
    136. Humphrey GW
    137. Idris MM
    138. Kiyama T
    139. Liang S
    140. Mellott D
    141. Mu X
    142. Murray G
    143. Olinski RP
    144. Raible F
    145. Rowe M
    146. Taylor JS
    147. Tessmar-Raible K
    148. Wang D
    149. Wilson KH
    150. Yaguchi S
    151. Gaasterland T
    152. Galindo BE
    153. Gunaratne HJ
    154. Juliano C
    155. Kinukawa M
    156. Moy GW
    157. Neill AT
    158. Nomura M
    159. Raisch M
    160. Reade A
    161. Roux MM
    162. Song JL
    163. Su YH
    164. Townley IK
    165. Voronina E
    166. Wong JL
    167. Amore G
    168. Branno M
    169. Brown ER
    170. Cavalieri V
    171. Duboc V
    172. Duloquin L
    173. Flytzanis C
    174. Gache C
    175. Lapraz F
    176. Lepage T
    177. Locascio A
    178. Martinez P
    179. Matassi G
    180. Matranga V
    181. Range R
    182. Rizzo F
    183. Röttinger E
    184. Beane W
    185. Bradham C
    186. Byrum C
    187. Glenn T
    188. Hussain S
    189. Manning G
    190. Miranda E
    191. Thomason R
    192. Walton K
    193. Wikramanayke A
    194. Wu SY
    195. Xu R
    196. Brown CT
    197. Chen L
    198. Gray RF
    199. Lee PY
    200. Nam J
    201. Oliveri P
    202. Smith J
    203. Muzny D
    204. Bell S
    205. Chacko J
    206. Cree A
    207. Curry S
    208. Davis C
    209. Dinh H
    210. Dugan-Rocha S
    211. Fowler J
    212. Gill R
    213. Hamilton C
    214. Hernandez J
    215. Hines S
    216. Hume J
    217. Jackson L
    218. Jolivet A
    219. Kovar C
    220. Lee S
    221. Lewis L
    222. Miner G
    223. Morgan M
    224. Nazareth LV
    225. Okwuonu G
    226. Parker D
    227. Pu LL
    228. Thorn R
    229. Wright R
    (2006) The genome of the sea urchin Strongylocentrotus purpuratus
    Ensembl Metazoa, Strongylocentrotus purpuratus.

Article and author information

Author details

  1. David Ramos-Vicente

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2730-0850
  2. Jie Ji

    Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther Gratacòs-Batlle

    Department of Biomedicine, Medical School, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gemma Gou

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Rita Reig-Viader

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Javier Luís

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Demian Burguera

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Enrique Navas-Perez

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Jordi García-Fernández

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pablo Fuentes-Prior

    Molecular Bases of Disease, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Hector Escriva

    Biologie Intégrative des Organismes Marins, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Nerea Roher

    Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
    Competing interests
    The authors declare that no competing interests exist.
  13. David Soto

    Department of Biomedicine, Medical School, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7995-3805
  14. Àlex Bayés

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    For correspondence
    abayesp@santpau.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5265-6306

Funding

Ministerio de Economía y Competitividad (BFU2012-34398)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Ministerio de Economía y Competitividad (BFU2014-57562-P)

  • David Soto

Centre National de la Recherche Scientifique (ANR-16-CE12-0008-01)

  • Hector Escriva

Ministerio de Economía y Competitividad (BFU2017-83317-P)

  • David Soto

Ministerio de Economía y Competitividad (RD16/0008/0014)

  • David Soto

Ministerio de Economía y Competitividad (BFU2015-69717-P)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Seventh Framework Programme (304111)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Ministerio de Economía y Competitividad (RYC-2011-08391)

  • Àlex Bayés

Ministerio de Economía y Competitividad (RYC-2010-06210)

  • Nerea Roher

China Scholarship Council (CSC-2013-06300075)

  • Jie Ji

Ministerio de Economía y Competitividad (SAF2014-57994-R)

  • Pablo Fuentes-Prior

Ministerio de Economía y Competitividad (AGL2015-65129-R)

  • Jie Ji
  • Nerea Roher

Generalitat de Catalunya (SGR-345-2014)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ramos-Vicente et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,229
    views
  • 609
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Ramos-Vicente
  2. Jie Ji
  3. Esther Gratacòs-Batlle
  4. Gemma Gou
  5. Rita Reig-Viader
  6. Javier Luís
  7. Demian Burguera
  8. Enrique Navas-Perez
  9. Jordi García-Fernández
  10. Pablo Fuentes-Prior
  11. Hector Escriva
  12. Nerea Roher
  13. David Soto
  14. Àlex Bayés
(2018)
Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events
eLife 7:e35774.
https://doi.org/10.7554/eLife.35774

Share this article

https://doi.org/10.7554/eLife.35774

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Susanne Tilk, Judith Frydman ... Dmitri A Petrov
    Research Article

    In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.

    1. Evolutionary Biology
    Lin Chao, Chun Kuen Chan ... Ulla Camilla Rang
    Research Article

    Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.