Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events

  1. David Ramos-Vicente
  2. Jie Ji
  3. Esther Gratacòs-Batlle
  4. Gemma Gou
  5. Rita Reig-Viader
  6. Javier Luís
  7. Demian Burguera
  8. Enrique Navas-Perez
  9. Jordi García-Fernández
  10. Pablo Fuentes-Prior
  11. Hector Escriva
  12. Nerea Roher
  13. David Soto
  14. Àlex Bayés  Is a corresponding author
  1. Biomedical Research Institute Sant Pau, Spain
  2. Universitat Autònoma de Barcelona, Spain
  3. University of Barcelona, Spain
  4. Sorbonne Université, CNRS, France

Abstract

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, Figure 1 - figure supplement 1, Figure 1 - figure supplement 3, Figure 1 - figure supplement 4, Figure2, Figure 4, Figure 4 - figure supplement 1 and Figure 4 - figure supplement 3.

The following previously published data sets were used
    1. Sea Urchin Genome Sequencing Consortium
    2. Sodergren E
    3. Weinstock GM
    4. Davidson EH
    5. Cameron RA
    6. Gibbs RA
    7. Angerer RC
    8. Angerer LM
    9. Arnone MI
    10. Burgess DR
    11. Burke RD
    12. Coffman JA
    13. Dean M
    14. Elphick MR
    15. Ettensohn CA
    16. Foltz KR
    17. Hamdoun A
    18. Hynes RO
    19. Klein WH
    20. Marzluff W
    21. McClay DR
    22. Morris RL
    23. Mushegian A
    24. Rast JP
    25. Smith LC
    26. Thorndyke MC
    27. Vacquier VD
    28. Wessel GM
    29. Wray G
    30. Zhang L
    31. Elsik CG
    32. Ermolaeva O
    33. Hlavina W
    34. Hofmann G
    35. Kitts P
    36. Landrum MJ
    37. Mackey AJ
    38. Maglott D
    39. Panopoulou G
    40. Poustka AJ
    41. Pruitt K
    42. Sapojnikov V
    43. Song X
    44. Souvorov A
    45. Solovyev V
    46. Wei Z
    47. Whittaker CA
    48. Worley K
    49. Durbin KJ
    50. Shen Y
    51. Fedrigo O
    52. Garfield D
    53. Haygood R
    54. Primus A
    55. Satija R
    56. Severson T
    57. Gonzalez-Garay ML
    58. Jackson AR
    59. Milosavljevic A
    60. Tong M
    61. Killian CE
    62. Livingston BT
    63. Wilt FH
    64. Adams N
    65. Bellé R
    66. Carbonneau S
    67. Cheung R
    68. Cormier P
    69. Cosson B
    70. Croce J
    71. Fernandez-Guerra A
    72. Genevière AM
    73. Goel M
    74. Kelkar H
    75. Morales J
    76. Mulner-Lorillon O
    77. Robertson AJ
    78. Goldstone JV
    79. Cole B
    80. Epel D
    81. Gold B
    82. Hahn ME
    83. Howard-Ashby M
    84. Scally M
    85. Stegeman JJ
    86. Allgood EL
    87. Cool J
    88. Judkins KM
    89. McCafferty SS
    90. Musante AM
    91. Obar RA
    92. Rawson AP
    93. Rossetti BJ
    94. Gibbons IR
    95. Hoffman MP
    96. Leone A
    97. Istrail S
    98. Materna SC
    99. Samanta MP
    100. Stolc V
    101. Tongprasit W
    102. Tu Q
    103. Bergeron KF
    104. Brandhorst BP
    105. Whittle J
    106. Berney K
    107. Bottjer DJ
    108. Calestani C
    109. Peterson K
    110. Chow E
    111. Yuan QA
    112. Elhaik E
    113. Graur D
    114. Reese JT
    115. Bosdet I
    116. Heesun S
    117. Marra MA
    118. Schein J
    119. Anderson MK
    120. Brockton V
    121. Buckley KM
    122. Cohen AH
    123. Fugmann SD
    124. Hibino T
    125. Loza-Coll M
    126. Majeske AJ
    127. Messier C
    128. Nair SV
    129. Pancer Z
    130. Terwilliger DP
    131. Agca C
    132. Arboleda E
    133. Chen N
    134. Churcher AM
    135. Hallböök F
    136. Humphrey GW
    137. Idris MM
    138. Kiyama T
    139. Liang S
    140. Mellott D
    141. Mu X
    142. Murray G
    143. Olinski RP
    144. Raible F
    145. Rowe M
    146. Taylor JS
    147. Tessmar-Raible K
    148. Wang D
    149. Wilson KH
    150. Yaguchi S
    151. Gaasterland T
    152. Galindo BE
    153. Gunaratne HJ
    154. Juliano C
    155. Kinukawa M
    156. Moy GW
    157. Neill AT
    158. Nomura M
    159. Raisch M
    160. Reade A
    161. Roux MM
    162. Song JL
    163. Su YH
    164. Townley IK
    165. Voronina E
    166. Wong JL
    167. Amore G
    168. Branno M
    169. Brown ER
    170. Cavalieri V
    171. Duboc V
    172. Duloquin L
    173. Flytzanis C
    174. Gache C
    175. Lapraz F
    176. Lepage T
    177. Locascio A
    178. Martinez P
    179. Matassi G
    180. Matranga V
    181. Range R
    182. Rizzo F
    183. Röttinger E
    184. Beane W
    185. Bradham C
    186. Byrum C
    187. Glenn T
    188. Hussain S
    189. Manning G
    190. Miranda E
    191. Thomason R
    192. Walton K
    193. Wikramanayke A
    194. Wu SY
    195. Xu R
    196. Brown CT
    197. Chen L
    198. Gray RF
    199. Lee PY
    200. Nam J
    201. Oliveri P
    202. Smith J
    203. Muzny D
    204. Bell S
    205. Chacko J
    206. Cree A
    207. Curry S
    208. Davis C
    209. Dinh H
    210. Dugan-Rocha S
    211. Fowler J
    212. Gill R
    213. Hamilton C
    214. Hernandez J
    215. Hines S
    216. Hume J
    217. Jackson L
    218. Jolivet A
    219. Kovar C
    220. Lee S
    221. Lewis L
    222. Miner G
    223. Morgan M
    224. Nazareth LV
    225. Okwuonu G
    226. Parker D
    227. Pu LL
    228. Thorn R
    229. Wright R
    (2006) The genome of the sea urchin Strongylocentrotus purpuratus
    Ensembl Metazoa, Strongylocentrotus purpuratus.

Article and author information

Author details

  1. David Ramos-Vicente

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2730-0850
  2. Jie Ji

    Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther Gratacòs-Batlle

    Department of Biomedicine, Medical School, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gemma Gou

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Rita Reig-Viader

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Javier Luís

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Demian Burguera

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Enrique Navas-Perez

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Jordi García-Fernández

    Department of Genetics, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pablo Fuentes-Prior

    Molecular Bases of Disease, Biomedical Research Institute Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Hector Escriva

    Biologie Intégrative des Organismes Marins, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Nerea Roher

    Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
    Competing interests
    The authors declare that no competing interests exist.
  13. David Soto

    Department of Biomedicine, Medical School, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7995-3805
  14. Àlex Bayés

    Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
    For correspondence
    abayesp@santpau.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5265-6306

Funding

Ministerio de Economía y Competitividad (BFU2012-34398)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Ministerio de Economía y Competitividad (BFU2014-57562-P)

  • David Soto

Centre National de la Recherche Scientifique (ANR-16-CE12-0008-01)

  • Hector Escriva

Ministerio de Economía y Competitividad (BFU2017-83317-P)

  • David Soto

Ministerio de Economía y Competitividad (RD16/0008/0014)

  • David Soto

Ministerio de Economía y Competitividad (BFU2015-69717-P)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Seventh Framework Programme (304111)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

Ministerio de Economía y Competitividad (RYC-2011-08391)

  • Àlex Bayés

Ministerio de Economía y Competitividad (RYC-2010-06210)

  • Nerea Roher

China Scholarship Council (CSC-2013-06300075)

  • Jie Ji

Ministerio de Economía y Competitividad (SAF2014-57994-R)

  • Pablo Fuentes-Prior

Ministerio de Economía y Competitividad (AGL2015-65129-R)

  • Jie Ji
  • Nerea Roher

Generalitat de Catalunya (SGR-345-2014)

  • David Ramos-Vicente
  • Gemma Gou
  • Rita Reig-Viader
  • Javier Luís
  • Àlex Bayés

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ramos-Vicente et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,311
    views
  • 614
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Ramos-Vicente
  2. Jie Ji
  3. Esther Gratacòs-Batlle
  4. Gemma Gou
  5. Rita Reig-Viader
  6. Javier Luís
  7. Demian Burguera
  8. Enrique Navas-Perez
  9. Jordi García-Fernández
  10. Pablo Fuentes-Prior
  11. Hector Escriva
  12. Nerea Roher
  13. David Soto
  14. Àlex Bayés
(2018)
Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events
eLife 7:e35774.
https://doi.org/10.7554/eLife.35774

Share this article

https://doi.org/10.7554/eLife.35774

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Günther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.