Glutamate Receptors: Family matters

Genome sequence data from a range of animal species are raising questions about the origins of glutamate receptors.
  1. Mark L Mayer  Is a corresponding author
  2. Timothy Jegla  Is a corresponding author
  1. National Institute for Neurological Disorders and Stroke, United States
  2. Pennsylvania State University, United States

Receptors for the amino acid glutamate have a crucial role in the nervous system of nearly all animals. These proteins are split between two families: metabotropic glutamate receptors modulate the activity of neural networks, while ionotropic glutamate receptors mediate the transmission of signals between neurons. While we know a great deal about glutamate receptors, the gigabytes of data from recent genome sequencing projects provide a new opportunity to dissect how they have evolved.

These growing genomic data have also prompted new ideas about the evolution of animals. According to a new – and still controversial – version of the animal tree of life (Figure 1), comb jellies, or ctenophores, evolved first (Moroz et al., 2014; Ryan et al., 2013). Sponges (porifera) appeared next, followed by placozoans, jellyfishes (cnidarians) and, finally, bilaterians, vertebrates and invertebrates with bilateral body symmetry. If this revised tree is correct (Jékely et al., 2015; Ryan, 2014), neurons could have been lost twice during evolution because comb jellies have a nervous system but sponges and placozoans do not. Now, in eLife, Àlex Bayés of the Biomedical Research Institute Sant Pau in Barcelona and colleagues – including David Ramos-Vicente as first author – report new insights into the evolution of glutamate receptors by conducting a comprehensive study of these proteins across different animal groups (Ramos-Vicente et al., 2018).

Two models for the evolution of glutamate receptors.

(A) For many years, it was assumed that porifera (sponges) were the earliest animals, but some researchers now argue that instead, ctenophores (comb jellies) evolved first. Yet, the details of how important aspects of the nervous system evolved remain unclear. Ramos-Vicente et al. propose that the sub-families of ionotropic glutamate receptors (Epsilon: orange; Lambda: grey; AKDF: blue; NMDA: red) were present in the last common ancestor (LCA) of all animals, with certain sub-families being lost (indicated by a cross) one or more times during evolution. (B) An alternative scheme, which we favor, proposes that a precursor of Epsilon receptors was the only family present in the last common ancestor. Gene duplication would have led to the evolution of the AKDF sub-family in the ancestor of placozoans, cnidaria and bilaterians, with the Lambda sub-family appearing only in sponges. Finally, another gene duplication event would have given rise to NMDA receptors in cnidarians and bilaterians. 

Image credit: Vignettes from phylopic.org. Ctenophores: Mali'o Kodis, photograph by Aqua-Photos; Porifera: Mali'o Kodis, photograph by Derek Keats (CC BY 3.0); Placozoans: Mali'o Kodis, photograph from Wikimedia (CC BY 3.0); Cnidaria: Qiang Ou (CC BY 3.0); Bilateria: Human (CC0), Hemichordata: Mali'o Kodis, drawing by Manvir Singh (CC BY 3.0).

Previously, researchers had identified four sub-families of ionotropic glutamate receptors, but they had mainly looked at vertebrate species. Now, Ramos-Vicente et al. muster data from other animal groups and propose a major reclassification that contains two new sub-families called Epsilon and Lambda. The NMDA receptors, which play a special role in vertebrates (Collingridge and Bliss, 1995), remain from the old classification, and the AKDF sub-family combines three other sub-families from the former model. Moreover, the team argues that all four sub-families were present in the last common ancestor of animals, with some being lost repeatedly during evolution (Figure 1A).

This would explain why the Epsilon sub-family is present in most animals today, whereas Lambda is only found in sponges. AKDF is carried by sponges, placozoans, jellyfish and bilaterians, but NMDA receptors exist only in these last two groups. However, we favor an alternative model in which the Epsilon sub-family evolved first, followed by the AKDF proteins. The Lambda receptors came next but only in sponges; then finally, the NMDA sub-family emerged in a common ancestor of jellyfish and bilaterians, persisting in these species (Figure 1B).

Amongst the newly identified sub-families, the Epsilon receptors are especially interesting because, like NMDA receptors, some of them are activated by glycine and others by glutamate. Such glycine receptors have previously been found in comb jellies (Alberstein et al., 2015; Yu et al., 2016), and now Ramos-Vicente et al. have identified them in a group of bilateral animals called lancelets, even though these organisms are separated from comb jellies by hundreds of millions of years of evolution. The receptors that get activated by glycine were more widespread than expected, with three receptors preferring glycine for every two favoring glutamate.

Deciphering the genetic sequence of a protein helps to predict its final structure. These analyses revealed that in comb jellies and lancelets, a subset of ionotropic glutamate receptors lacks the molecular features required to bind neurotransmitter amino acids, which suggests that they attach to other, as yet unidentified molecules. Surprisingly, when modeling the structure of one of the Epsilon receptors found in lancelets, it appeared that it might not be able to bind a ligand at all. This feature was seen in five Epsilon subunits and six AKDF subunits in these animals.

Many of the new receptors reported by Ramos-Vicente et al. have been identified only by analyzing their genetic sequences; their functional properties have yet to be studied either in native tissues, which is a challenge for many marine creatures, or by expressing these proteins in model organisms. When this is done, our understanding of the diversity of glutamate receptors will expand enormously.

References

Article and author information

Author details

  1. Mark L Mayer

    Mark L Mayer is at the National Institute for Neurological Disorders and Stroke, Bethesda, United States

    For correspondence
    mark.mayer@nih.gov
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4378-8451
  2. Timothy Jegla

    Timothy Jegla is in the Department of Biology and the Huck Institute for the Life Sciences, Pennsylvania State University, University Park, United States

    For correspondence
    tjj3@psu.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8616-2390

Publication history

  1. Version of Record published:

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,566
    views
  • 162
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark L Mayer
  2. Timothy Jegla
(2018)
Glutamate Receptors: Family matters
eLife 7:e43815.
https://doi.org/10.7554/eLife.43815

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.