Glutamate Receptors: Family matters

Genome sequence data from a range of animal species are raising questions about the origins of glutamate receptors.
  1. Mark L Mayer  Is a corresponding author
  2. Timothy Jegla  Is a corresponding author
  1. National Institute for Neurological Disorders and Stroke, United States
  2. Pennsylvania State University, United States

Receptors for the amino acid glutamate have a crucial role in the nervous system of nearly all animals. These proteins are split between two families: metabotropic glutamate receptors modulate the activity of neural networks, while ionotropic glutamate receptors mediate the transmission of signals between neurons. While we know a great deal about glutamate receptors, the gigabytes of data from recent genome sequencing projects provide a new opportunity to dissect how they have evolved.

These growing genomic data have also prompted new ideas about the evolution of animals. According to a new – and still controversial – version of the animal tree of life (Figure 1), comb jellies, or ctenophores, evolved first (Moroz et al., 2014; Ryan et al., 2013). Sponges (porifera) appeared next, followed by placozoans, jellyfishes (cnidarians) and, finally, bilaterians, vertebrates and invertebrates with bilateral body symmetry. If this revised tree is correct (Jékely et al., 2015; Ryan, 2014), neurons could have been lost twice during evolution because comb jellies have a nervous system but sponges and placozoans do not. Now, in eLife, Àlex Bayés of the Biomedical Research Institute Sant Pau in Barcelona and colleagues – including David Ramos-Vicente as first author – report new insights into the evolution of glutamate receptors by conducting a comprehensive study of these proteins across different animal groups (Ramos-Vicente et al., 2018).

Two models for the evolution of glutamate receptors.

(A) For many years, it was assumed that porifera (sponges) were the earliest animals, but some researchers now argue that instead, ctenophores (comb jellies) evolved first. Yet, the details of how important aspects of the nervous system evolved remain unclear. Ramos-Vicente et al. propose that the sub-families of ionotropic glutamate receptors (Epsilon: orange; Lambda: grey; AKDF: blue; NMDA: red) were present in the last common ancestor (LCA) of all animals, with certain sub-families being lost (indicated by a cross) one or more times during evolution. (B) An alternative scheme, which we favor, proposes that a precursor of Epsilon receptors was the only family present in the last common ancestor. Gene duplication would have led to the evolution of the AKDF sub-family in the ancestor of placozoans, cnidaria and bilaterians, with the Lambda sub-family appearing only in sponges. Finally, another gene duplication event would have given rise to NMDA receptors in cnidarians and bilaterians. 

Image credit: Vignettes from phylopic.org. Ctenophores: Mali'o Kodis, photograph by Aqua-Photos; Porifera: Mali'o Kodis, photograph by Derek Keats (CC BY 3.0); Placozoans: Mali'o Kodis, photograph from Wikimedia (CC BY 3.0); Cnidaria: Qiang Ou (CC BY 3.0); Bilateria: Human (CC0), Hemichordata: Mali'o Kodis, drawing by Manvir Singh (CC BY 3.0).

Previously, researchers had identified four sub-families of ionotropic glutamate receptors, but they had mainly looked at vertebrate species. Now, Ramos-Vicente et al. muster data from other animal groups and propose a major reclassification that contains two new sub-families called Epsilon and Lambda. The NMDA receptors, which play a special role in vertebrates (Collingridge and Bliss, 1995), remain from the old classification, and the AKDF sub-family combines three other sub-families from the former model. Moreover, the team argues that all four sub-families were present in the last common ancestor of animals, with some being lost repeatedly during evolution (Figure 1A).

This would explain why the Epsilon sub-family is present in most animals today, whereas Lambda is only found in sponges. AKDF is carried by sponges, placozoans, jellyfish and bilaterians, but NMDA receptors exist only in these last two groups. However, we favor an alternative model in which the Epsilon sub-family evolved first, followed by the AKDF proteins. The Lambda receptors came next but only in sponges; then finally, the NMDA sub-family emerged in a common ancestor of jellyfish and bilaterians, persisting in these species (Figure 1B).

Amongst the newly identified sub-families, the Epsilon receptors are especially interesting because, like NMDA receptors, some of them are activated by glycine and others by glutamate. Such glycine receptors have previously been found in comb jellies (Alberstein et al., 2015; Yu et al., 2016), and now Ramos-Vicente et al. have identified them in a group of bilateral animals called lancelets, even though these organisms are separated from comb jellies by hundreds of millions of years of evolution. The receptors that get activated by glycine were more widespread than expected, with three receptors preferring glycine for every two favoring glutamate.

Deciphering the genetic sequence of a protein helps to predict its final structure. These analyses revealed that in comb jellies and lancelets, a subset of ionotropic glutamate receptors lacks the molecular features required to bind neurotransmitter amino acids, which suggests that they attach to other, as yet unidentified molecules. Surprisingly, when modeling the structure of one of the Epsilon receptors found in lancelets, it appeared that it might not be able to bind a ligand at all. This feature was seen in five Epsilon subunits and six AKDF subunits in these animals.

Many of the new receptors reported by Ramos-Vicente et al. have been identified only by analyzing their genetic sequences; their functional properties have yet to be studied either in native tissues, which is a challenge for many marine creatures, or by expressing these proteins in model organisms. When this is done, our understanding of the diversity of glutamate receptors will expand enormously.

References

Article and author information

Author details

  1. Mark L Mayer

    Mark L Mayer is at the National Institute for Neurological Disorders and Stroke, Bethesda, United States

    For correspondence
    mark.mayer@nih.gov
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4378-8451
  2. Timothy Jegla

    Timothy Jegla is in the Department of Biology and the Huck Institute for the Life Sciences, Pennsylvania State University, University Park, United States

    For correspondence
    tjj3@psu.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8616-2390

Publication history

  1. Version of Record published:

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,559
    views
  • 161
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark L Mayer
  2. Timothy Jegla
(2018)
Glutamate Receptors: Family matters
eLife 7:e43815.
https://doi.org/10.7554/eLife.43815

Further reading

    1. Evolutionary Biology
    Thibaut Sellinger, Frank Johannes, Aurélien Tellier
    Research Article

    With the availability of high-quality full genome polymorphism (SNPs) data, it becomes feasible to study the past demographic and selective history of populations in exquisite detail. However, such inferences still suffer from a lack of statistical resolution for recent, for example bottlenecks, events, and/or for populations with small nucleotide diversity. Additional heritable (epi)genetic markers, such as indels, transposable elements, microsatellites, or cytosine methylation, may provide further, yet untapped, information on the recent past population history. We extend the Sequential Markovian Coalescent (SMC) framework to jointly use SNPs and other hyper-mutable markers. We are able to (1) improve the accuracy of demographic inference in recent times, (2) uncover past demographic events hidden to SNP-based inference methods, and (3) infer the hyper-mutable marker mutation rates under a finite site model. As a proof of principle, we focus on demographic inference in Arabidopsis thaliana using DNA methylation diversity data from 10 European natural accessions. We demonstrate that segregating single methylated polymorphisms (SMPs) satisfy the modeling assumptions of the SMC framework, while differentially methylated regions (DMRs) are not suitable as their length exceeds that of the genomic distance between two recombination events. Combining SNPs and SMPs while accounting for site- and region-level epimutation processes, we provide new estimates of the glacial age bottleneck and post-glacial population expansion of the European A. thaliana population. Our SMC framework readily accounts for a wide range of heritable genomic markers, thus paving the way for next-generation inference of evolutionary history by combining information from several genetic and epigenetic markers.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.