Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure

  1. Isabel Rodriguez-Barraquer  Is a corresponding author
  2. Emmanuel Arinaitwe
  3. Prasanna Jagannathan
  4. Moses R Kamya
  5. Phillip J Rosenthal
  6. John Rek
  7. Grant Dorsey
  8. Joaniter Nankabirwa
  9. Sarah G Staedke
  10. Maxwell Kilama
  11. Chris Drakeley
  12. Isaac Ssewanyana
  13. David L Smith
  14. Bryan Greenhouse
  1. University of California, San Francisco, United States
  2. Infectious Diseases Research Collaboration, Uganda
  3. Stanford University, United States
  4. Makerere University College of Health Sciences, Uganda
  5. Infectious Diseases Resarch Collaboration, Uganda
  6. London School of Hygiene and Tropical Medicine, United Kingdom
  7. University of Washington, United States

Abstract

Fundamental gaps remain in our understanding of how immunity to malaria develops. We used detailed clinical and entomological data from parallel cohort studies conducted across the malaria transmission spectrum in Uganda to quantify the development of immunity against symptomatic P. falciparum as a function of age and transmission intensity. We focus on: anti-parasite immunity (i.e; ability to control parasite densities) and anti-disease immunity (i.e; ability to tolerate higher parasite densities without fever). Our findings suggest a strong effect of age on both types of immunity, not explained by cumulative-exposure. They also show an independent effect of exposure, where children living in moderate/high transmission settings develop immunity faster as transmission increases. Surprisingly, children in the lowest transmission setting appear to develop immunity more efficiently than those living in moderate transmission settings. Anti-parasite and anti-disease immunity develop in parallel, reducing the probability of experiencing symptomatic malaria upon each subsequent P. falciparum infection.

Data availability

All the data used for these analyses as well as the R code used to reproduce the main study findings are available at https://github.com/isabelrodbar/immunity. Complete data from the 3 cohort studies are available at the CliEpiDB website (https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e).

Article and author information

Author details

  1. Isabel Rodriguez-Barraquer

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    For correspondence
    isabel.rodriguez-barraquer@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6784-1021
  2. Emmanuel Arinaitwe

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  3. Prasanna Jagannathan

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6305-758X
  4. Moses R Kamya

    Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  5. Phillip J Rosenthal

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John Rek

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  7. Grant Dorsey

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joaniter Nankabirwa

    Infectious Diseases Resarch Collaboration, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  9. Sarah G Staedke

    London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Maxwell Kilama

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  11. Chris Drakeley

    London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4863-075X
  12. Isaac Ssewanyana

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  13. David L Smith

    Institute of Health Metrics and Evaluation, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4367-3849
  14. Bryan Greenhouse

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (2U19AI089674)

  • Isabel Rodriguez-Barraquer
  • Emmanuel Arinaitwe
  • Prasanna Jagannathan
  • Moses R Kamya
  • Phillip J Rosenthal
  • John Rek
  • Grant Dorsey
  • Joaniter Nankabirwa
  • Sarah G Staedke
  • Maxwell Kilama
  • Chris Drakeley
  • Isaac Ssewanyana
  • David L Smith
  • Bryan Greenhouse

Bill and Melinda Gates Foundation (OPP1110495)

  • David L Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was reviewed and approved by the Makerere University School of Medicine Research and Ethics Committee (Identification numbers 2011-149 and 2011-167, the Uganda National Council for Science and Technology, , the London School of Hygiene and Tropical Medicine Ethics Committee (Identification numbers 5943 and 5944), the Durham University School of Biological and Biomedical Sciences Ethics Committee (PRISM Entomology Uganda), and the University of California, San Francisco, Committee on Human Research (Identification numbers 11-05539 and 11-05995) and the Uganda National Council for Science and Technology (Identification numbers HS350 and HS-1019).. All parents/guardians were asked to provide written informed consent at the time of enrollment.

Copyright

© 2018, Rodriguez-Barraquer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,726
    views
  • 629
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isabel Rodriguez-Barraquer
  2. Emmanuel Arinaitwe
  3. Prasanna Jagannathan
  4. Moses R Kamya
  5. Phillip J Rosenthal
  6. John Rek
  7. Grant Dorsey
  8. Joaniter Nankabirwa
  9. Sarah G Staedke
  10. Maxwell Kilama
  11. Chris Drakeley
  12. Isaac Ssewanyana
  13. David L Smith
  14. Bryan Greenhouse
(2018)
Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure
eLife 7:e35832.
https://doi.org/10.7554/eLife.35832

Share this article

https://doi.org/10.7554/eLife.35832

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.