The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding

  1. Renuka Kudva
  2. Pengfei Tian
  3. Fátima Pardo-Avila
  4. Marta Carroni
  5. Robert B Best
  6. Harris D Bernstein
  7. Gunnar von Heijne  Is a corresponding author
  1. Stockholm University, Sweden
  2. National Institutes of Health, United States
  3. Stanford University, United States
3 figures, 1 video, 2 tables and 1 additional file

Figures

Figure 1 with 2 supplements
Cotranslational protein folding assay.

(A) Front view of the 50S subunit of the E.coli ribosome adapted from PDB 3JBU (Zhang et al., 2015), with tunnel proteins uL4 and uL22 indicated in gray. The globular domain of uL23 is indicated in orange with the β-hairpin loop depicted in yellow. uL24 is shown in dark blue, with the loop at the tunnel exit shown in light blue. The exit tunnel, outlined by a stalled SecM nascent chain (purple), is ~100 Å in length. (B) The arrest-peptide assay (Nilsson et al., 2015). The domain to be studied is placed L residues upstream of the critical proline at the C-terminal end of the 17-residue long arrest peptide (AP) from the E. coli SecM protein. A 23-residue long stretch of the E. coli LepB protein is attached downstream of the AP, allowing us to separate the arrested (A) and full-length (FL) products by SDS-PAGE after translation. Constructs are translated in the PURExpress in vitro translation system supplemented with WT, uL23 Δloop, or uL24 Δloop high-salt washed ribosomes for 20 min. The relative amounts of arrested and full-length protein were estimated by quantification of SDS-PAGE gels, and the fraction of full-length protein was calculated as fFL = IFL/(IA +IFL) where IA and IFL are the intensities of the bands corresponding to the A and FL products. (c) fFL is a proxy for the force F that cotranslational folding of a protein domain exerts on the AP. At short linker lengths, both F and fFL ≈ 0 because the domain is unable to fold due to lack of space in the exit tunnel. At intermediate linker lengths, F and fFL > 0 because the domain pulls on the nascent chain as it folds. At longer linker lengths, F and fFL ≈ 0 because the domain is already folded when the ribosome reaches the end of the AP.

https://doi.org/10.7554/eLife.36326.002
Figure 1—figure supplement 1
A260 = 300 units (6.9 μM) of high-salt washed ribosomes were separated on a 12% Bis-Tris gel and transferred by Western blotting onto a nitrocellulose membrane and detected with antibodies against uL24 (panel A) or uL23 (panel B).
https://doi.org/10.7554/eLife.36326.003
Figure 1—figure supplement 2
Multiple sequence alignment of uL23 and uL24.

(A) and uL24 (B). The uL23 and uL24 b-hairpin loops, boxed, respectively, in orange and blue, are conserved among Gram-negative bacteria, but are short or absent in archaea and eukaryotes. In eukaryotes and archaea, part of the function of uL23 is proposed to be fulfilled by ribosomal protein eL39.

https://doi.org/10.7554/eLife.36326.004
Figure 2 with 1 supplement
Structural consequences of removing the hairpin loops in uL24 and uL23 modeled after PDB 3JBU of the SecM stalled ribosome.

(A) In wildtype ribosomes, the loop in uL24 partially obstructs the exit tunnel (top panel). Its removal in uL24 Δloop ribosomes creates a wide opening into the tunnel (bottom panel). (B) In wildtype ribosomes, the loop in uL23 extends into the exit tunnel (top panel). Its removal in uL23 Δloop ribosomes creates an open space around the area where the ADR1a domain is known to fold (Nilsson et al., 2015). The ADR1a structure is from PDB 5A7U. (C) Cryo-EM structure of the uL23 Δloop 70 S ribosome (EMD-4319), fitted to PDB 3JBU (that includes a Gly-tRNA and a 26-residue long arrested SecM AP) to locate uL23 (orange) and the exit tunnel. The enlarged region shows a difference map (in mesh) obtained by subtracting the cryo-EM map of the uL23 Δloop 70 S ribosome from a map generated from 3JBU in Chimera. The difference map shows that the only difference in volume between the two maps is the tRNA (in magenta), the SecM AP (in pink), and the loop deleted from uL23. (D) Extracted cryo-EM density (in mesh) for uL23 in the uL23 Δloop ribosome EMD-4319. Wildtype uL23 (orange) and a de novo-built model for the mutant uL23 Δloop protein (PDB 6FU8; red) are shown in ribbon representation.

https://doi.org/10.7554/eLife.36326.005
Figure 2—figure supplement 1
Resolution map of the uL23Δ loop ribosome.

(A) Calculation of the local resolution using cryoSPARC. (B) Resolution histogram at FSC 0.143. (C) Fourier-Shell correlation (FSC) curve of the refined map at 0.143 indicating an average resolution of 3.28 Å.

https://doi.org/10.7554/eLife.36326.006
Figure 3 with 10 supplements
Cotranslational folding in WT, uL23 delta-loop, and uL24 delta-loop ribosomes.

(A) ΔfFL profiles (ΔfFL = fFL(50 μM Zn2+) – fFL(50 μM TPEN)) for ADR1a constructs translated in the PURE system supplemented with in-house purified WT (gray), uL23 Δloop (red), and uL24 Δloop (blue) E. coil ribosomes. (B) fFL profiles for spectrin R16 constructs translated in the PURE system supplemented with in-house purified WT (gray), uL23 Δloop (red), and uL24 Δloop (blue) E. coli ribosomes. (C) fFL profiles for titin I27 constructs translated in the PURE system supplemented with in-house purified WT (gray), uL23 Δloop (red), and uL24 Δloop (blue) E. coli ribosomes. Error bars in panels a-c show SEM values calculated from at least three independent experiments. Dashed lines indicate Lonset and Lend values, c.f., Table 1. fFL profiles for non-folding mutants of R16 and I27 are found in (Nilsson et al., 2017; Tian et al., 2018). (D) Simulated fFL profiles (full lines) for ADR1a, spectrin R16, and titin I27 obtained with WT (gray), uL23 Δloop (red), and uL24 Δloop (blue) ribosomes. The corresponding experimental fFL profiles from panels a-c are shown as dashed lines. The simulated ADR1a fFL profile marked by X’s was obtained with a uL23 Δloop(70-72) ribosome model. Simulated fFL profiles for ADR1a with uL24 Δloop ribosomes, and for R16 and I27 with uL23 Δloop ribosomes, are essentially identical to the corresponding profiles obtained with WT ribosomes, and are shown in Figure 3—figure supplement 10.

https://doi.org/10.7554/eLife.36326.008
Figure 3—figure supplement 1
SDS PAGE showing ADR1 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.

Translations were run on 12% Bis-Tris gels with MOPS running buffer.

https://doi.org/10.7554/eLife.36326.009
Figure 3—figure supplement 2
SDS PAGE showing ADR1 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.
https://doi.org/10.7554/eLife.36326.010
Figure 3—figure supplement 3
SDS PAGE showing ADR1 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.
https://doi.org/10.7554/eLife.36326.011
Figure 3—figure supplement 4
SDS PAGE showing ADR1 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.
https://doi.org/10.7554/eLife.36326.012
Figure 3—figure supplement 5
SDS PAGE showing Spectrin R16 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.

Translations were run on 12% Bis-Tris gels with MES running buffer.

https://doi.org/10.7554/eLife.36326.013
Figure 3—figure supplement 6
SDS PAGE showing Spectrin R16 and Titin I27 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated.

Translations were run on 12% Bis-Tris gels with MES running buffer.

https://doi.org/10.7554/eLife.36326.014
Figure 3—figure supplement 7
SDS PAGE showing titin I27 constructs translated in PURExpress Δ-Ribosome kit supplemented with high-salt-washed ribosomes isolated from HDB140, HDB143 (uL23 Δloop), or HDB144 (uL24 Δloop) as indicated
https://doi.org/10.7554/eLife.36326.015
Figure 3—figure supplement 8
fFL profiles for ADR1a constructs translated in PURE by WT, uL23 Δloop, and uL24 Δloop ribosomes, either in the presence of Zn2+ or of the Zn2+ chelator TPEN.

Averages and standard errors calculated from three independent translation reactions are shown.

https://doi.org/10.7554/eLife.36326.016
Figure 3—figure supplement 9
Sequences of the longest and the shortest constructs used for each protein and, a depiction of the location of the sequences the ribosome exit tunnel when the last residue of the AP is in the P-site (lower panel, yellow box).

ADR1 is indicated in red, spectrin R16 in blue, titin I27 in pink, and the SecM AP in magenta. The linker between each domain and the AP is in gray. The part of LepB added to the N-terminus of ADR1a is in black.

https://doi.org/10.7554/eLife.36326.017
Figure 3—figure supplement 10
Summary of results from coarse-grained MD simulations.

(A) Average forces exerted on the AP by the folded state (first column), fraction folded protein (second column), and fFL values (last column) for ADR1a, I27, and R16 at different linker lengths L. (B) Snapshots of folded ADR1a, I27, and R16 domains in wildtype (WT), uL23 Δloop, and uL24 Δloop ribosomes at L values ≈ Lonset. Note that the folded proteins are located at similar depths in the exit tunnel in the cryo-EM structures and the simulations for WT ribosomes (this holds also for ADR1a in uL24 Δloop ribosomes as well as for I27 and R16 in uL23 Dloop ribosomes, c.f. panel A). The C terminus of folded ADR1a is located ~6 Å deeper in the exit tunnel in uL23 Δloop than in WT ribosomes, while folded I27 and R16 are located, respectively,~15 Å and ~13 Å deeper in the exit tunnel in uL24 Δloop ribosomes (dashed guide lines). Note that the linker is more stretched in the WT ribosome simulations compared to the Δloop ribosomes, consistent with the higher force and lower fraction folded protein seen for the WT ribosome data at the same L values (panel a).

https://doi.org/10.7554/eLife.36326.018

Videos

Video 1
The ribosome exit tunnel (mesh), as calculated for PDB 3JBU, uL23 Δloop and uL24 Δloop ribosomes by POVME.

See Figure 1A for coloring scheme. The b-hairpin loops deleted in uL23 Δloop and uL24 Δloop ribosomes are shown in yellow and light blue, respectively. To facilitate the visualization of the exit tunnel, spheres left outside the exit tunnel after POVME processing were manually removed.

https://doi.org/10.7554/eLife.36326.007

Tables

Table 1
Lonset, Lmax, and Lend values calculated from the fFL profiles in Figure 3.
https://doi.org/10.7554/eLife.36326.020
ADR1aR16I27
WTuL23 ΔloopuL24 ΔloopWTuL23 ΔloopuL24 ΔloopWTuL23 ΔloopuL24 Δloop
Lonset211720313129323328
Lmax252225353533353535
Lend272627423940383841
Key resources table
Reagent type
(species) or
resource
DesignationSource or referenceIdentifiersAdditional information
Strain, strain
background
(Escherichia coli)
HDB140, HDB143,
HDB144, Strain
background N281
10.1111/j.1365–2958
.2010.07325.x
NAStrains used to isolate
high-salt washed
ribosomes in this study.
AntibodyuL23, uL2410.1111/j.1365–2958
.2010.07325.x
NA1:8000 dilution used
(incubated for one hour).
Secondary antibody:
Mouse (1:20,000 dilution
incubated for one hour).
Nitrocellulose membrane
blocked with 5% Milk in
TBS-T for an hour.
Peptide,
recombinant
protein
uL23 Δ loop,
uL24 Δ loop
10.1111/j.1365–2958
.2010.07325.x
UniProtKB- P0ADZ0 (rplW)
UniProtKB-P60624 (rplX)
Referred to as HDB 143
and HDB 144 in original
paper. Refers to genes
rplWΔ65–74 and rplX
Δ43–57 respectively.
Commercial
assay or kit
GeneJET Plasmid
miniprep kit
Thermo Fisher
Scientific
RRID:SCR_008452
Cat no. K0502Used to purify plasmids
Commercial
assay or kit
PURExpress Δ
Ribosome kit
New England BiolabsCat no. E3313SKit was supplemented
with ribosomes purified
in the lab. Translation
carried out at 37°C for 20 min.
Software,
algorithm
EasyQuantdoi: 10.1038/
nsmb.2376
NAUsed to quantify relative
fraction full-length of
translated protein from
SDS-PAGE
Software,
algorithm
cryoSPARC version v2Structura
Biotechnology Inc
NAUsed for ab-initio
reconstruction of uL23Δloop
ribosomes. The following
operations were carried
out as part of the
cryoSPARC workflow: 2D
classification, Ab initio
reconstruction, Homogeneous
refinement, Sharpening and
map flipping to correct for
handedness, local resolution.
Software,
algorithm
UCSF ChimeraXSCR_015872Used to make Figure 2A
Software,
algorithm
UCSF Chimera v. 1.12J Comput Chem.
2004 Oct;25
(Nilsson et al., 2015):
1605–12.
SCR_004097Used to visualise the cryoEM
map, fit PDB models 3JBU,
4YBB to check for differences
in maps. Used to make figures.
Software,
algorithm
Jalview v 2.10.4doi: 10.1093/
bioinformatics/btp033
SCR_006459Use for generating multiple
sequence alignments of
uL23 and uL24 in the
supplementary figures.
ChemicalPotassium acetateSigma-Aldrich
(SCR_008988)
Cat no. P1190Source of potassium
ions to stabilise ribosomes
ChemicalMagnesium acetateSigma-Aldrich
(SCR_008988)
Cat no. M5661Source of Magnesium
ions to stabilise ribosomes
ChemicalcOmplete protease
inhibitor cocktail
Sigma-Aldrich
(SCR_008988)
Cat no. 04693116001Used as a protease
inhibitor during cell
lysis to obtain ribosomes
ChemicalN,N,N′,N′-Tetrakis
(2-pyridylmethyl)
ethylenediamine
Sigma Aldrich
(SCR_008988)
Cat no. P4413Used to chelate Zn
for the -Zn reactions
in the ADR1 plot.
Chemicalthreo-1,4-Dimercapto-2,
3-butanediol
DL-Dithiothreitol
Sigma Aldrich
(SCR_008988)
Cat no. DTT-ROReducing agent added
to buffers during ribosome
purification and as a
reductant for SDS-PAGE
ChemicalTris BaseSigma-Aldrich (SCR_008988)Cat no. T1503Buffering agent during
ribosome preparation
Chemical35S MethioninePerkin-ElmerCat no.
NEG009T001MC
35S Methionine is
incorporated into the
protein during in vitro
translation and aids
detection by
phosphorimaging.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renuka Kudva
  2. Pengfei Tian
  3. Fátima Pardo-Avila
  4. Marta Carroni
  5. Robert B Best
  6. Harris D Bernstein
  7. Gunnar von Heijne
(2018)
The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding
eLife 7:e36326.
https://doi.org/10.7554/eLife.36326