The shape of the ribosome exit tunnel affects cotranslational protein folding

  1. Renuka Kudva
  2. Pengfei Tian
  3. Fátima Pardo-Avila
  4. Marta Carroni
  5. Robert Best
  6. Harris D Bernstein
  7. Gunnar von Heijne  Is a corresponding author
  1. Stockholm University, Sweden
  2. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States
  3. Stanford University, United States

Abstract

The E.coli ribosome exit tunnel can accommodate small folded proteins, while larger ones fold outside. It remains unclear, however, to what extent the geometry of the tunnel influences protein folding. Here, using E. coli ribosomes with deletions in loops in proteins uL23 and uL24 that protrude into the tunnel, we investigate how tunnel geometry determines where proteins of different sizes fold. We find that a 29-residue zinc-finger domain normally folding close to the uL23 loop folds deeper in the tunnel in uL23 Dloop ribosomes, while two ~100-residue protein normally folding close to the uL24 loop near the tunnel exit port fold at deeper locations in uL24 Dloop ribosomes, in good agreement with results obtained by coarse-grained molecular dynamics simulations. This supports the idea that cotranslational folding commences once a protein domain reaches a location in the exit tunnel where there is sufficient space to house the folded structure.

Data availability

Cryo-EM map deposited under accession code EMD-4319Atomic model for uL23 Dloop deposited under PDB accession number 6FU8

The following data sets were generated

Article and author information

Author details

  1. Renuka Kudva

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0426-3716
  2. Pengfei Tian

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fátima Pardo-Avila

    Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Carroni

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7697-6427
  5. Robert Best

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7893-3543
  6. Harris D Bernstein

    Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4941-3741
  7. Gunnar von Heijne

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    For correspondence
    gunnar@dbb.su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4490-8569

Funding

Knut och Alice Wallenbergs Stiftelse (2012.0282)

  • Gunnar von Heijne

Vetenskapsrådet (621-2014-3713)

  • Gunnar von Heijne

Cancerfonden (15 0888)

  • Gunnar von Heijne

National Institutes of Health (Intramural)

  • Robert Best

National Institutes of Health (Intramural)

  • Harris D Bernstein

National Institutes of Health (R35GM122543)

  • Fátima Pardo-Avila

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,459
    views
  • 735
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renuka Kudva
  2. Pengfei Tian
  3. Fátima Pardo-Avila
  4. Marta Carroni
  5. Robert Best
  6. Harris D Bernstein
  7. Gunnar von Heijne
(2018)
The shape of the ribosome exit tunnel affects cotranslational protein folding
eLife 7:e36326.
https://doi.org/10.7554/eLife.36326

Share this article

https://doi.org/10.7554/eLife.36326

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    Bikash Adhikari, Katharina Schneider ... Elmar Wolf
    Research Article

    The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.