Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors

  1. Yang Yang
  2. Dongwei Kang
  3. Laura A Nguyen
  4. Zachary B Smithline
  5. Christophe Pannecouque
  6. Peng Zhan  Is a corresponding author
  7. Xinyong Liu  Is a corresponding author
  8. Thomas A Steitz  Is a corresponding author
  1. Yale University, United States
  2. Shandong University, China
  3. KU Leuven, Belgium

Abstract

Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.

Data availability

Diffraction data and atomic coordinates have been deposited in the Protein Data Bank under the accession codes 6C0J, 6C0K, 6C0L, 6CGF, 6C0N, 6C0O, 6C0P, 6C0R, 6DUF, 6DUG, and 6DUH.

The following data sets were generated
The following previously published data sets were used
    1. Lansdon EB
    (2010) HIV-1 Reverse Transcriptase in Complex with TMC125
    Publicly available at the RCSB Protein Data Bank (accession no. 3MEC).

Article and author information

Author details

  1. Yang Yang

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9061-3828
  2. Dongwei Kang

    Department of Medicinal Chemistry, Shandong University, Jinan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9232-953X
  3. Laura A Nguyen

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zachary B Smithline

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christophe Pannecouque

    Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Peng Zhan

    Department of Medicinal Chemistry, Shandong University, Jinan, China
    For correspondence
    zhanpeng1982@sdu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinyong Liu

    Department of Medicinal Chemistry, Shandong University, Jinan, China
    For correspondence
    xinyongl@sdu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Steitz

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    thomas.steitz@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3357-3505

Funding

Howard Hughes Medical Institute (Investigator Program)

  • Thomas A Steitz

National Institute of General Medical Sciences (GM022778)

  • Thomas A Steitz

National Natural Science Foundation of China (81273354)

  • Xinyong Liu

Key research and development project of Shandong Province (2017CXGC1401)

  • Xinyong Liu

Major Project of Science and Technology of Shandong Province (2015ZDJS04001)

  • Xinyong Liu

Young Scholars Program of Shandong University (2016WLJH32)

  • Peng Zhan

Key Project of National Natural Science Foundation of China for International Cooperation (81420108027)

  • Xinyong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Publication history

  1. Received: March 2, 2018
  2. Accepted: July 18, 2018
  3. Accepted Manuscript published: July 25, 2018 (version 1)
  4. Version of Record published: August 7, 2018 (version 2)

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,085
    Page views
  • 359
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Yang
  2. Dongwei Kang
  3. Laura A Nguyen
  4. Zachary B Smithline
  5. Christophe Pannecouque
  6. Peng Zhan
  7. Xinyong Liu
  8. Thomas A Steitz
(2018)
Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors
eLife 7:e36340.
https://doi.org/10.7554/eLife.36340

Further reading

    1. Microbiology and Infectious Disease
    Leire Aguinagalde Salazar, Maurits A den Boer ... Suzan HM Rooijakkers
    Research Article

    Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on S. pneumoniae strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.

    1. Microbiology and Infectious Disease
    Ashelyn E Sidders, Katarzyna M Kedziora ... Brian P Conlon
    Research Article Updated

    Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.