1. Cell Biology
  2. Neuroscience
Download icon

Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor

  1. Corinne L Pender
  2. H Robert Horvitz  Is a corresponding author
  1. Howard Hughes Medical Institute, Massachusetts Institute of Technology, United States
Research Article
  • Cited 1
  • Views 1,377
  • Annotations
Cite this article as: eLife 2018;7:e36828 doi: 10.7554/eLife.36828

Abstract

The HIF (hypoxia-inducible factor) transcription factor is the master regulator of the metazoan response to chronic hypoxia. In addition to promoting adaptations to low oxygen, HIF drives cytoprotective mechanisms in response to stresses and modulates neural circuit function. How most HIF targets act in the control of the diverse aspects of HIF-regulated biology remains unknown. We discovered that a HIF target, the C. elegans gene cyp-36A1, is required for numerous HIF-dependent processes, including modulation of gene expression, stress resistance, and behavior. cyp-36A1 encodes a cytochrome P450 enzyme that we show controls expression of more than a third of HIF-induced genes. CYP-36A1 acts cell non-autonomously by regulating the activity of the nuclear hormone receptor NHR-46, suggesting that CYP-36A1 functions as a biosynthetic enzyme for a hormone ligand of this receptor. We propose that regulation of HIF effectors through activation of cytochrome P450 enzyme/nuclear receptor signaling pathways could similarly occur in humans.

Article and author information

Author details

  1. Corinne L Pender

    Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. H Robert Horvitz

    Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    horvitz@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9964-9613

Funding

National Institutes of Health (GM024663)

  • Corinne L Pender
  • H Robert Horvitz

Howard Hughes Medical Institute

  • Corinne L Pender
  • H Robert Horvitz

National Institutes of Health (T32GM007287)

  • Corinne L Pender

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Publication history

  1. Received: March 21, 2018
  2. Accepted: July 15, 2018
  3. Accepted Manuscript published: July 16, 2018 (version 1)
  4. Version of Record published: August 6, 2018 (version 2)

Copyright

© 2018, Pender & Horvitz

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,377
    Page views
  • 241
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Malini Rajan et al.
    Research Article
    1. Cell Biology
    2. Plant Biology
    Charlotte Kirchhelle et al.
    Research Article Updated