Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide
Abstract
Nitric oxide (NO) is released into the air by NO-producing organisms; however, it is unclear if animals utilize NO as a sensory cue. We show that C. elegans avoids Pseudomonas aeruginosa (PA14) in part by detecting PA14-produced NO. PA14 mutants deficient for NO production fail to elicit avoidance and NO donors repel worms. PA14 and NO avoidance are mediated by a chemosensory neuron (ASJ) and these responses require receptor guanylate cyclases and cyclic nucleotide gated ion channels. ASJ exhibits calcium increases at both the onset and removal of NO. These NO-evoked ON and OFF calcium transients are affected by a redox sensing protein, TRX-1/thioredoxin. TRX-1's trans-nitrosylation activity inhibits the ON transient whereas TRX-1's de-nitrosylation activity promotes the OFF transient. Thus, C. elegans exploits bacterially produced NO as a cue to mediate avoidance and TRX-1 endows ASJ with a bi-phasic response to NO exposure.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
National Institutes of Health (DK80215)
- Joshua M Kaplan
National Institutes of Health (DC009852)
- Yun Zhang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Hao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,683
- views
-
- 433
- downloads
-
- 56
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 56
- citations for umbrella DOI https://doi.org/10.7554/eLife.36833