Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

  1. Andrew J Aman
  2. Alexis N Fulbright
  3. David M Parichy  Is a corresponding author
  1. University of Virginia, United States
  2. Huntsman Cancer Institute, United States

Abstract

Understanding how patterning influences cell behaviors to generate three dimensional morphologies is a central goal of developmental biology. Additionally, comparing these regulatory mechanisms among morphologically diverse tissues allows for rigorous testing of evolutionary hypotheses. Zebrafish skin is endowed with a coat of precisely patterned bony scales. We use in-toto live imaging during scale development and manipulations of cell signaling activity to elucidate core features of scale patterning and morphogenesis. These analyses show that scale development requires the concerted activity of Wnt/β-catenin, Ectodysplasin (Eda) and Fibroblast growth factor (Fgf) signaling. This regulatory module coordinates Hedgehog (HH) dependent collective cell migration during epidermal invagination, a cell behavior not previously implicated in skin appendage morphogenesis. Our analyses demonstrate the utility of zebrafish scale development as a tractable system in which to elucidate mechanisms of developmental patterning and morphogenesis, and suggest a single, ancient origin of skin appendage patterning mechanisms in vertebrates.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Specialized materials including transgenic and mutant lines are available upon request.

Article and author information

Author details

  1. Andrew J Aman

    Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexis N Fulbright

    University of Utah, Huntsman Cancer Institute, Salt Lake Cite, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5634-4094
  3. David M Parichy

    Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
    For correspondence
    dparichy@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2771-6095

Funding

National Institutes of Health (R35 GM122471)

  • David M Parichy

Royalty Research Fund (A112414)

  • David M Parichy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Animal Care and Use Committee (ACUC) protocols (#4170) of the University of Virginia. All imaging and regeneration experiments were performed under MS222 anesthesi , and every effort was made to minimize suffering.

Copyright

© 2018, Aman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,541
    views
  • 887
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew J Aman
  2. Alexis N Fulbright
  3. David M Parichy
(2018)
Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development
eLife 7:e37001.
https://doi.org/10.7554/eLife.37001

Share this article

https://doi.org/10.7554/eLife.37001

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.

    1. Developmental Biology
    Wei Yan
    Editorial

    The articles in this special issue highlight the diversity and complexity of research into reproductive health, including the need for a better understanding of the fundamental biology of reproduction and for new treatments for a range of reproductive disorders.