Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination

  1. Joseph J Campo  Is a corresponding author
  2. Timothy Q Le
  3. Jozelyn V Pablo
  4. Christopher Hung
  5. Andy A Teng
  6. Hervé Tettelin
  7. Andrea Tate
  8. William P Hanage
  9. Mark R Alderson
  10. Xiaowu Liang
  11. Richard Malley
  12. Marc Lipsitch
  13. Nicholas J Croucher  Is a corresponding author
  1. Antigen Discovery Inc, United States
  2. University of Maryland, United States
  3. PATH, United States
  4. Harvard TH Chan School of Public Health, United States
  5. Boston Children's Hospital, United States
  6. Imperial College London, United Kingdom

Abstract

Pneumococcal whole cell vaccines (WCVs) could cost-effectively protect against a greater strain diversity than current capsule-based vaccines. Immunoglobulin G (IgG) responses to a WCV were characterised by applying longitudinally-sampled sera, available from 35 adult placebo-controlled phase I trial participants, to a panproteome microarray. Despite individuals maintaining distinctive antibody 'fingerprints', responses were consistent across vaccinated cohorts. Seventy-two functionally distinct proteins were associated with WCV-induced increases in IgG binding. These shared characteristics with naturally immunogenic proteins, being enriched for transporters and cell wall metabolism enzymes, likely unusually exposed on the unencapsulated WCV's surface. Vaccine-induced responses were specific to variants of the diverse PclA, PspC and ZmpB proteins, whereas PspA- and ZmpA-induced antibodies recognised a broader set of alleles. Temporal variation in IgG levels suggested a mixture of anamnestic and novel responses. These reproducible increases in IgG binding a limited, but functionally diverse, set of conserved proteins indicate WCV could provide species-wide immunity.

Data availability

Sequencing data have been deposited in the ENA under accession code ERS2169631. Proteome array data analysed in this study is available as source data files for figures one and two.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joseph J Campo

    Antigen Discovery Inc, Irvine, United States
    For correspondence
    jcampo@antigendiscovery.com
    Competing interests
    Joseph J Campo, is an employee of Antigen Discovery, Inc.
  2. Timothy Q Le

    Antigen Discovery Inc, Irvine, United States
    Competing interests
    Timothy Q Le, is an employee of Antigen Discovery, Inc.
  3. Jozelyn V Pablo

    Antigen Discovery Inc, Irvine, United States
    Competing interests
    Jozelyn V Pablo, is an employee of Antigen Discovery, Inc.
  4. Christopher Hung

    Antigen Discovery Inc, Irvine, United States
    Competing interests
    Christopher Hung, is an employee of Antigen Discovery, Inc.
  5. Andy A Teng

    Antigen Discovery Inc, Irvine, United States
    Competing interests
    Andy A Teng, is an employee of Antigen Discovery, Inc.
  6. Hervé Tettelin

    Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Andrea Tate

    PATH, Seattle, United States
    Competing interests
    No competing interests declared.
  8. William P Hanage

    Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    William P Hanage, work on this project was supported by consulting payments from Antigen Discovery, Inc.
  9. Mark R Alderson

    PATH, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Xiaowu Liang

    Antigen Discovery Inc, Irvine, United States
    Competing interests
    Xiaowu Liang, is an employee of Antigen Discovery, Inc. and has an equity interest in Antigen Discovery, Inc.
  11. Richard Malley

    Boston Children's Hospital, Boston, United States
    Competing interests
    Richard Malley, has received honoraria or consulting fees from Merck and Affinivax, and has received research grants through his institution from PATH, the Bill and Melinda Gates Foundation, and Pfizer.
  12. Marc Lipsitch

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Marc Lipsitch, Reviewing editor, eLife, work on this project was supported by consulting payments from Antigen Discovery, Inc, has received honoraria or consulting fees from Pfizer, Affinivax, and Merck, and has received research grants through his institution from Pfizer and PATH.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1504-9213
  13. Nicholas J Croucher

    Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    n.croucher@imperial.ac.uk
    Competing interests
    Nicholas J Croucher, work on this project was supported by consulting payments from Antigen Discovery, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6303-8768

Funding

Bill and Melinda Gates Foundation

  • Joseph J Campo
  • Timothy Q Le
  • Jozelyn V Pablo
  • Christopher Hung
  • Andy A Teng

National Institutes of Health (R01AI066304)

  • Marc Lipsitch

Wellcome (104169/Z/14/Z)

  • Nicholas J Croucher

Royal Society (104169/Z/14/Z)

  • Nicholas J Croucher

PATH

  • Andrea Tate
  • Mark R Alderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The VAC-002 phase 1 study (ClinicalTrials.gov identifier: NCT01537185) was reviewed and approved by the Western Institutional Review Board and conducted in compliance with the study protocol, international standards of Good Clinical Practice and the Declaration of Helsinki. Participants were healthy adults aged 18 to 40 years at the time of consent, and had no evidence of chronic health issues, and nor any history of invasive pneumococcal disease or pneumococcal vaccination.

Copyright

© 2018, Campo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,541
    views
  • 259
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph J Campo
  2. Timothy Q Le
  3. Jozelyn V Pablo
  4. Christopher Hung
  5. Andy A Teng
  6. Hervé Tettelin
  7. Andrea Tate
  8. William P Hanage
  9. Mark R Alderson
  10. Xiaowu Liang
  11. Richard Malley
  12. Marc Lipsitch
  13. Nicholas J Croucher
(2018)
Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination
eLife 7:e37015.
https://doi.org/10.7554/eLife.37015

Share this article

https://doi.org/10.7554/eLife.37015

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.