A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider

  1. Christian Louis Bonatto Paese
  2. Anna Schoenauer
  3. Daniel J Leite
  4. Steven Russell
  5. Alistair P McGregor  Is a corresponding author
  1. Oxford Brookes University, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Christian Louis Bonatto Paese

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5209
  2. Anna Schoenauer

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel J Leite

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven Russell

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alistair P McGregor

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    For correspondence
    amcgregor@brookes.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2908-2420

Funding

Leverhulme Trust (RPG-2016-234)

  • Alistair P McGregor

Biotechnology and Biological Sciences Research Council (BB/N007069/1)

  • Steven Russell

Conselho Nacional de Desenvolvimento Científico e Tecnológico (234586/2014-1)

  • Christian Louis Bonatto Paese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikola-Michael Prpic

Version history

  1. Received: April 14, 2018
  2. Accepted: August 10, 2018
  3. Accepted Manuscript published: August 21, 2018 (version 1)
  4. Version of Record published: October 1, 2018 (version 2)

Copyright

© 2018, Bonatto Paese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,650
    Page views
  • 330
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian Louis Bonatto Paese
  2. Anna Schoenauer
  3. Daniel J Leite
  4. Steven Russell
  5. Alistair P McGregor
(2018)
A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider
eLife 7:e37567.
https://doi.org/10.7554/eLife.37567

Share this article

https://doi.org/10.7554/eLife.37567

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Zian Liao, Suni Tang ... Martin Matzuk
    Research Article

    Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.