Abstract

Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.

Data availability

All data generated or analyses during this study are included in the manuscript and supporting files. Proteomic data was uploadedto the PRIDE database with the dataset identifier PXD009443. Transcriptomic data was uploaded to the GEO database as described in the manuscript (methods).

The following data sets were generated

Article and author information

Author details

  1. Meytal Radzinski

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Rosi Fassler

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ohad Yogev

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. William Breuer

    Proteomics and Mass Spectrometry Unit, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadav Shai

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2812-3884
  6. Jenia Gutin

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Sidra Ilyas

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Yifat Geffen

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Sabina Tsytkin-Kirschenzweig

    Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Yaakov Nahmias

    Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Tommer Ravid

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Nir Friedman

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550
  13. Maya Shuldiner

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Dana Reichmann

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    danare@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0315-5334

Funding

Israel Science Foundation

  • Dana Reichmann

Human Frontier Science Program

  • Dana Reichmann

European Commission

  • Dana Reichmann

US-Binational Science Foundation

  • Dana Reichmann

Joint Berlin-Jerusalem postdoc fellowship, Hebrew University and Freie University

  • Sidra Ilyas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Agnieszka Chacinska, University of Warsaw, Poland

Publication history

  1. Received: April 17, 2018
  2. Accepted: June 4, 2018
  3. Accepted Manuscript published: June 5, 2018 (version 1)
  4. Version of Record published: June 28, 2018 (version 2)
  5. Version of Record updated: July 4, 2018 (version 3)
  6. Version of Record updated: July 18, 2018 (version 4)

Copyright

© 2018, Radzinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,816
    Page views
  • 483
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meytal Radzinski
  2. Rosi Fassler
  3. Ohad Yogev
  4. William Breuer
  5. Nadav Shai
  6. Jenia Gutin
  7. Sidra Ilyas
  8. Yifat Geffen
  9. Sabina Tsytkin-Kirschenzweig
  10. Yaakov Nahmias
  11. Tommer Ravid
  12. Nir Friedman
  13. Maya Shuldiner
  14. Dana Reichmann
(2018)
Temporal profiling of redox-dependent heterogeneity in single cells
eLife 7:e37623.
https://doi.org/10.7554/eLife.37623

Further reading

    1. Biochemistry and Chemical Biology
    Holly Y Chen, Manju Swaroop ... Anand Swaroop
    Research Article

    Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6,000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.

    1. Biochemistry and Chemical Biology
    Lisa Goebel, Tonia Kirschner ... Daniel Rauh
    Short Report

    Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.